

Francisco Estevez Ruiz

ID: UB17497SEL25287

ASIGNATURA ACADEMICA PARA LICENCIATURA EN INGENIERIA ELECTRICA

SIMULATION OF POWER SYSTEMS

FRANCISCO ESTEVEZ RUIZ 2013

Cochabamba - Bolivia

INDICE

SIMULATION OF POWER SYSTEMS

1.	OBJETIVO DEL TEMA	5
2.	ALCANCE	5
3.	DESCRIPCION	5

CAPITULO I

NOCIONES BASICAS DE SISTEMAS DE POTENCIA

1.1. ELEMENTOS DEL SISTEMA ELECTRICO DE POTENCIA7
1.2. REPRESENTACION DEL SISTEMA DE POTENCIA
1.2.1. DIAGRAMA MUNIFILAR
1.2.2. DIAGARMA DE IMPEDANCIA
1.2.2.1.LINEA DE TRANSMISION
1.2.2.2.EL TRANSFORMADOR DE POTENCIA
1.2.2.3.EL GENERADOR SINCRONO
1.3. SISTEMA ELECTRICO BOLIVIANO11
1.3.1. CARACTERISTICAS DEL SIN 12
1.3.2. CAPACIDAD DE GENERACION
1.3.3. RED DE TRANSMISION

CAPITULO II

CALCULO DE FLUJOS DE POTENCIA

2.1.	ASPECTOS TEORICOS GENERALES	16
2.2.	FORMULACION BASICA DEL FLUJO DE POTENCIA	16
2.2.1.	DATOS PARA LA SOLUCION DE FLUJOS DE CARGA	18
2.2.2.	CARACTERISTICAS DEL PROGRAMA DE FLUJOS DE POTENCIA	19
2.2.3.	MODO DE EDICIÓN: DIAGRAMA UNIFILAR E INTRODUCCIÓN	
MOD	VIFICACIÓN DE DATOS	19
2.2.4.	MODO DE EJECUCION Y ANALISIS DE LOS RESULTADOS DEL FLUJO	
DE C	ARGA	20
2.3.	ACCIONES DE CONTROL PARA CUMPLIR LÍMITES OPERATIVOS DEL	
SIST	ЕМА	27

2.3.1. FRECUENCIA	
2.3.2. TENSION EN BARRAS	
2.3.3. TENSIÓN EN BORNES DEL GENERADOR	
2.3.4. PARÁMETROS DE TRANSMISIÓN	
2.3.4.1.CARGA MÁXIMA DE COMPONENTES	

CAPITULO III

CALCULO DE FLUJO DE POTENCIA ÓPTIMO

3.1. ASPECTOS GENERALES DE FLUJOS DE POTENCIA ÓPTIMO	29
3.2. DESPACHO ECONOMICO CLASICO	30
3.2.1. CARACTERISTICAS DE LAS UNIDADES GENERADORAS	30
3.2.2. CÁLCULO DEL HEAT RATE	32
3.2.3. CÁLCULO DE LA FUNCIÓN COSTO DE COMBUSTIBLE	32
3.3. UNIT COMMITMENT (CONCEPTO BÁSICO)	33
3.4. FORMULACIÓN BÁSICA DEL FLUJO DE POTENCIA ÓPTIMO	34
3.5. DATOS PARA LA SOLUCION DEL PROBLEMA	35
3.5.1. DIAGRAMA UNIFILAR	36
3.5.2. CÁLCULO DE DESPACHO ECONÓMICO	37
3.5.2.1.Cálculo de la demanda requerida	37
3.5.2.2.Cálculo de la generación inyectada	37
3.5.2.3.Calculo de la función costo	37
3.5.2.4.Calculo del Costo Medio	38
3.6. NODOS DE CONEXION BALANCE GLOBAL DEL SISTEMA	38
3.6.1. CALCULO DE INGRESOS Y RETIROS VALORIZADOS	41
3.6.2. ANALISIS DE SEGURIDAD N-1 SIMULACION DE CONTINGENCIA.	45

CAPITULO IV

CALCULO DE CORTOCIRCUITO

4.1.	ASPECTOS GENERALES DEL PROGRAMA DE CORTOCIRCUITO	. 47
4.2.	MODO DE EDICIÓN DEL PROGRAMA INTRODUCCION/MODIFICACIO	N
DE P	ARAMETROS	. 49
4.3.	OPCIONES DEL MODO EJECUCION DEL PROGRAMA	. 52
4.3.1	. CALCULO DE CORRIENTES DE CORTO CIRCUITO TRIFASICO	. 55
4.3.2	. CALCULO DE CORRIENRES DE CORTOCIRCUITO MONOFASICO A	
TIER	RA	. 57
4.4.	APLICACIÓN A COORDINACIÓN DE PROTECCIONES	. 59

SIMULATION OF POWER SYSTEMS

4.5.	APLICACIÓN A OPERACIÓN Y PLANIFICACION	63
4.	CONCLUSIONES	65
5.	REFERENCIAS	65

SIMULATION OF POWER SYSTEMS

1. OBJETIVO DEL TEMA

El objetivo fundamental del tema es la de analizar el funcionamiento de los sistemas eléctricos, utilizando programas especializados de Sistemas Eléctricos de Potencia bajo los siguientes parámetros específicos:

- Modelar a los componentes de un sistema eléctrico de potencia, como: líneas de transmisión, transformadores, generadores, compensadores shunt
- Definir y calcular los parámetros eléctricos de secuencia de líneas de transmisión, transformadores, etc
- Conocer y ejecutar los modos de edición y ejecución de software aplicados a sistemas de potencia
- Calcular flujos de carga y analizar el estado de operación del sistema eléctrico
- Calcular el despacho económico para la operación a costo mínimo del sistema eléctrico
- Realizar análisis de seguridad N-1 del sistema eléctrico.

2. ALCANCE

Forma parte del alcance de este tema las simulaciones, para modelar los componentes del sistema eléctrico de potencia y definir los cálculos de los parámetros eléctricos ejecutando los modos de edición y ejecución del software Power World aplicados a sistemas de potencia como flujos de carga, despacho económico, estado de operación del sistema eléctrico y el cálculo de los corto circuitos

3. DESCRIPCION

Se describe el contenido de la asignatura SIMULATION OF POWER SYSTEMS con los siguientes capítulos fundamentales: Capitulo I Nociones Básicas de Sistemas de Potencia.-Capitulo II Calculo de Flujos de Potencia.- Capitulo III Calculo de Flujo de Potencia Optimo.- Capitulo IV Calculo de Corto Circuito.-

Tomando como base la red modelada en Power World, se han configurado los componentes de un sistema eléctrico de potencia como líneas de transmisión,

transformadores, generadores, etc con las que se realizaran simulaciones para analizar y optimizar el desempeño del sistema de potencia.

Power World es una herramienta computacional que usa modelos matemáticos para realizar estudios de análisis de sistemas de potencia.

NOCIONES BASICAS DE SISTEMAS DE POTENCIA

1.1. ELEMENTOS DEL SISTEMA ELECTRICO DE POTENCIA

El sistema de potencia está formado por un conjunto de elementos que interactúan entre sí, y pueden agruparse de la siguiente manera:

Grupo 1:

(CJA

- Elementos de Producción.- Generadores y sus Máquinas Primarias
- Elementos de Conversión.- Transformadores, rectificadores, inversores
- Transmisión y Distribución.- Líneas de Transmisión y Redes
- Consumidores de Energía Eléctrica

Grupo 2:

Corresponde a los elementos de control que regulan o modifican el estado de operación del sistema.

- Excitación de la Maquina Síncrona.
- Reguladores de Velocidad.
- Capacitores Shunt y compensadores.
- Transformadores con LTC

1.2. REPRESENTACION DEL SISTEMA DE POTENCIA

1.2.1. DIAGRAMA UNIFILAR

El diagrama unifilar de un sistema de potencia muestra de manera objetiva los datos más significativos e importantes, donde esta información estará de acuerdo al tipo de estudio a realizar. (Flujos de carga, Corto Circuito, Coordinación de Protecciones, etc.).

1.2.2. DIAGRAMA DE IMPEDANCIA

Es el diagrama unifilar representado como un diagrama de impedancias, donde cada elemento es representado a través de su circuito equivalente.

1.2.2.1. LINEA DE TRANSMISION

El circuito equivalente de la línea de transmisión normalmente se representa a través de un circuito equivalente π que contiene una impedancia serie y una capacitancia a tierra dividida en sus dos extremos

Figura 1.1 Circuito π de una línea de transmisión

Ejemplo: Cálculo de Parámetros:

Los datos típicos del conductor de cierta línea de transmisión son los siguientes y se quiere calcular sus valores en por unidad, tal como requiere el programa de flujos de carga:

r = 0.0604 Ω/km x = 0.4036 Ω/km c = 9*10⁻⁹ F/km Longitud = 79.89 km Vn = 230 kV Sb 0 100 MVA

Para el cálculo de valores en p.u. se requiere calcular previamente el valor de la impedancia base del circuito

Zb =
$$(Vn)^2/Sb = (230)^2/100 = 529 \Omega$$
.

La resistencia en p.u. de la línea

$$r(pu) = r(\Omega)/Zb$$

r = (0.0604 [\Omega/km]*79.89 [km])/589 \Omega = 0.00912 p.u.

La reactancia en p.u. de la línea

$$x(pu) = x(\Omega)/Zb$$

x = (0.4036 [\Omega/km]*79.89 [km])/589 \Omega = 0.06090 p.u.

La suceptancia de línea en p.u.

$$B = wlC = 2\pi fC^*l$$

$$B = 2\pi^* 50^* 9^* 10^{-9} 79.89 [S] = 2.26^* 10^{-4} [S]$$

$$B = 2.26^* 10^{-4} [S]^* 529 [\Omega] = 0.1195 \text{ p.u.}$$

El valor en p.u. de la suceptancia se calcula multiplicando por la impedancia base. Este valor además brinda información de la potencia reactiva en vacío generada por la línea. Es decir, en el ejemplo la línea proporcionaría 11.95 Mvar.

1.2.2.2. EL TRANSFORMADOR DE POTENCIA

El circuito equivalente del transformador real, considera que la permeabilidad no es infinita, la resistencia de las bobinas provocan perdidas, las perdidas por histéresis y Foucault son consideradas en el hierro

Figura 1.2 Circuito T de un transformador ideal

Despreciando el valor de la corriente de magnetización, se simplifica el circuito, donde:

Figura 1.3 Circuito equivalente de un transformador

Normalmente es proporcionada la siguiente información de los transformadores:

S_n = Potencia aparente en MVA del transformador (ONAN/ONAF)

 U_1/U_2 = Relación de transformación

Ucc = Tensión de corto circuito obtenida del ensayo de corto circuito del transformador

Ejemplo:

 $S_n = 75 \text{ MVA}, U_1/U_2 = 230/69 \text{ kV}, U_{cc} = 8 \%$ (base propia)

La reactancia del transformador en su propia base es: x = 0.08 p.u. Pasando a una nueva base, por ejemplo 100 MV

 $x^{n} = 0.08 * S^{nue}/S^{ant}$ $x^{n} = 0.08 * 100/75 = 0.1067 \text{ p.u.}$

El cálculo de la resistencia del transformador se obtiene a partir de las perdidas en el cobre

$$I = S_N / (\sqrt{3} U)$$
$$R = P_{cu} / (3 I^2)$$

1.2.2.3. EL GENERADOR SINCRONO

Los generadores síncronos se caracterizan en general en términos de la potencia máxima aparente, MVA, a determinado voltaje y factor de frecuencia que pueden manejar continuamente sin sobrecalentarse. La producción de potencia activa del generador limita por lo general a un valor comprendido entre la potencia aparente y la capacidad de su máquina de accionamiento.

En virtud a su sistema de regulación de voltaje, la maquina trabaja en general a un voltaje constante entre \pm 5 % del voltaje nominal.

Cuando están fijos la potencia suministrada y el voltaje, la potencia reactiva permisible se limita ya sea por el calentamiento del devanado del estator o del devanado de campo. Esto se muestra objetivamente en el diagrama de capacidad del generador.

Figura 1.4 Curva de capacidad del generador

1.3. SISTEMA ELECTRICO BOLIVIANO

El sistema eléctrico Boliviano o Sistema Interconectado Nacional (SIN) está formado por instalaciones de generación, transmisión y distribución que suministra energía eléctrica en los departamentos de La Paz, Oruro, Cochabamba, Santa Cruz, Potosí y Chuquisaca. La demanda total en el SIN equivale, aproximadamente, al 90% de la demanda del país. En la figura 1.5 se puede apreciar geográficamente al SIN.

Figura 1.5 Sistema Troncal Geográfico

El Sistema Troncal de Interconexión (STI) es la parte del SIN que consta de líneas de alta tensión en 230, 115, 69 kV y subestaciones asociadas, donde los Agentes del Mercado Eléctrico Mayorista (MEM) compran y venden energía eléctrica.

El Mercado Eléctrico Mayorista (MEM) está integrado por Generadores, Transmisores, Distribuidores y Consumidores No Regulados, que efectúan operaciones de compra – venta y transporte de electricidad en el SIN.

1.3.1. CARACTERISTICAS DEL SIN

El SIN se caracteriza por tener las siguientes áreas bien definidas: Norte (La Paz), Oriental (Santa Cruz) y Centro - Sur (Cochabamba, Oruro, Potosí, Chuquisaca). Cada área tiene una demanda equivalente a un tercio del total.

Cada área tiene Generación local: El área Norte tiene principalmente centrales hidráulicas de pasada, el área Oriental tiene centrales a gas y a vapor y el área Centro – Sur tiene centrales hidráulicas de embalse y a gas. La red de transmisión se utiliza principalmente para intercambios de energía y potencia que optimizan el despacho de carga del SIN.

El SIN opera en el marco de la ley de Electricidad y reglamentación complementaria, promoviendo el aprovechamiento integral y sostenible de los recursos energético, la competencia en generación, la presencia de empresas no integradas y el acceso libre a la transmisión. En la siguiente tabla se muestra la evolución de las demandas máximas de los dos últimos años.

	Gestión		Variación
Consumidores	2012	2011	%
Santa Cruz	379,3	359,1	5,6
La Paz	261,1	241,3	8,2
Cochabamba	165,3	152,2	8,6
Oruro Sucre	64,3	60,6	6,0
Sucre	37,1	35,1	5,9
Potosí	36,2	31,3	15,8
Punutuma- Tupiza	17,8	16,1	10,1
No Regulados	68,7	71,7	-4,1
Otros (*)	23,7	13,0	82,3
Sistema	1053,5	980,4	7,4

Tabla 1.1 DEMANDAS MAXIMAS

(*) Chimore, Don Diego, Sacaca, Mariaca, Ocuri, Trinidad, Yucumo, San Borja y Lipez

1.3.2. CAPACIDAD DE GENERACION

La capacidad actual de generación en las diferentes centrales del SIN es de 1258 MW; de esta potencia 476 MW corresponden a plantas hidroeléctricas y 782 MW a plantas termoeléctricas. Esta última cifra corresponde a la potencia efectiva en condiciones de temperatura media anual, en el sitio de la central.

Hidroeléctricas	Capacidad		Termo Eléctricas	Capacidad
Sistema Corani	1/18 7	Guaracachi (25°C) 267.7		
Sistema Zongo	199.9		Santa Cruz (25°C)	1207.7
	100.0			42.3
Sistema Miguillas	21.1		Aranjuez (15°C)	36.7
Sistema Taquesi	89.3		Karachipampa (9°C)	14.4
Kanata	7.5		Kenko (10°C)	18.7
Sistema Yura	19.0	Valle Hermoso (18°C) 74.3		74.3
Quehata	2.0	Carrasco (25°C) 109.8		109.8
Bulo Bulo (25°C)		89.6		
		Entre Ríos (25°C) 107.1		107.1
			Guabirá (25°C)	21.0
Subtotal 476.4 Subtotal 7		781.6		
Capacidad total (Hidro + Termo) : 1,258.14 MW				

Tabla 1.2 CAPACIDAD DE GENERACION A FINES DE 2010

El parque Hidroeléctrico consiste en sistemas de aprovechamiento en cascada con centrales esencialmente de pasada (Zongo, Taquesi, y Yura), centrales con embalse (Corani) y Miguillas) y una Central (Kanata) cuya operación depende del abastecimiento de agua potable de SEMAPA.

La producción de las centrales hidroeléctricas de pasada en el periodo seco disminuye en aproximadamente 30% de la producción del periodo lluvioso.

El parque termoeléctrico consiste en turbinas a gas de ciclo abierto y unidades diésel (Aranjuez DF) que utilizan gas y diésel oíl. La capacidad de generación de las centrales termoeléctricas se reduce con el aumento de temperatura; en el periodo mayo – octubre en que se registran las máximas temperaturas, en aproximadamente 10%

1.3.3. RED DE TRANSMISION

El Sistema Troncal de interconexión a fines del año 2012 estaba compuesto por 1,545 km de líneas en 230 kV, 1,277 km de líneas de 115 km y 185 km de líneas en 69 kV haciendo un

total de 3,008 km de líneas de transmisión. La capacidad de transformación de este sistema es de 1,195 MVA. La red de transmisión del SIN, actualmente a cargo de las empresas TDE e ISA Bolivia, está formada por las siguientes líneas de transmisión y subestaciones de transformación y cuyas capacidades se pueden apreciar en la tabla 1.3 y 1.4 respectivamente.

Тіро	Subestación	MVA
	Mazocruz	150.0
Transformación	San Jose	75.0
230/115 kV	Valle Hermoso	150.0
	Vinto	100.0
	Arboleda	100.0
Subtotal		575.0
Transformación	Guaracachi	150.0
230/69 kV	Punutuma	60.0
	Sucre	60.0
	Urubo	150.0
Subtotal		420.0
	Atocha	25.0
Transformación	Catavi	25.0
115/69 kV	Potosí	50.0
	Punutuma	50.0
	Vinto	50.0
Subtotal		200.0
Total		1195.0

Tabla 1.3 Subestaciones

Tabla 1.4 Líneas de Transmisión del STI

Tensión	Tramo	Longitud (Km)
	Carrasco Chimore	75.3
	Carrasco Guaracachi	179
	Carrasco Santibáñez	225.6
	Chimore San Jose	78.8
	Mazocruz Vinto capacitor	193.4
230 kV	San Jose Valle Hermoso	59.6
	Santibáñez Vinto	123.7
	Valle Hermoso Santibáñez	22.7
	Arboleda Urubo	62.0
	Carrasco Arboleda	102.0
	Santibáñez Sucre	246.0
	Sucre Punutuma	177.0
Subtotal		1545.1

Tensión	Tramo	Longitud (Km)
	Arocagua Santa Isabel	45.6
	Arocagua Valle Hermoso	5.4
	Caranavi Chuspipata	63.9
	Catavi Ocuri	97.8
	Catavi Sacaca	43.4
	Catavi Vinto	76.7
	Chuspipata Tap Chuquiagillo	42.1
	Corani Santa Isabel	6.4
	Corani Valle Hermoso	43.5
	Kenko Senkata	6.3
	Kenko Senkata	8.0
	Ocuri Potosí	84.4
115 kV	Punutuma Atocha	104.4
	Santa Isabe4l San Jose	8.9
	Senkata Masocruz	7.8
	Tap Coboce Sacaca	41.9
	Tap Coboce Valle Hermoso	45.5
	Valle Hermoso Vinto	148.0
	Bolognia Cota Cota	5.1
	Bolognia Tap Bahai	2.3
	Caranavi Yucumo	104.5
	Cota Cota Kenko	15.7
	Pampahasi Tap Bahai	2.2
	Pampahasi Tap Chuquiagillo	4.1
	San Borja San Ignacio de Moxos	138.5
	San Ignacio de Moxos Trinidad	84.8
	Yucumo San Borja	40.4
Subtotal		1277.6

Tensión	Tramo	Longitud (Km)
	Aranjuez Mariaca	42.9
	Aranjuez Sucre	12.0
69 kV	Don Diego Karachipampa	16.0
	Don Diego Mariaca	31.2
	Karachipampa Potosí	10.0
	Potosí Punutuma	73.2
Subtotal		185.3

CAPITULO II CALCULO DE FLUJOS DE POTENCIA

2.1. ASPECTOS TEORICOS GENERALES

El cálculo y análisis del flujo de potencias en la red de un Sistema Eléctrico de Potencia (SEP) es uno de los aspectos más importantes de su comportamiento en régimen permanente. Consiste en determinar los flujos de potencia activa (MW) y reactiva MVAr) en cada línea del sistema y las tensiones (Volt) en cada una de las barras, para ciertas condiciones preestablecidas de operación.

Hasta el año 1950, el Cálculo del Flujo de Potencias (CFP) se realizaba utilizando principalmente los Analizadores de Redes de Corriente Alterna (ARCA) y en algunos casos, los Analizadores de Redes de Corriente Continua (ARCC) que corresponden a una simulación a escala del Sistema Real. En la actualidad, el CFP se realiza fundamentalmente, utilizando los computadores digitales por las grandes ventajas que éstos presentan respecto a los analizadores de redes.

El análisis del flujo de potencias (AFP) permite:

- Programar las ampliaciones necesarias del SEP y determinar su mejor modo de operación, teniendo en cuenta posibles nuevos consumos, nuevas líneas o nuevas centrales generadoras.
- Estudiar los efectos sobre la distribución de potencias, cuando se producen pérdidas temporales de generación o circuitos de transmisión.
- Ayudar a determinar los programas de despacho de carga para obtener un funcionamiento óptimo.

2.2. FORMULACION BASICA DEL FLUJO DE POTENCIA

Analizar la Operación real del Sistema Eléctrico de Potencia de la figura 2.1 usando el módulo de Flujos de Potencia del programa Power World.

a.- Construya el diagrama unifilar de la figura 2.1 en el programa Power World con la información necesaria de cada elemento del sistema eléctrico de potencia de acuerdo al apartado 2.2.1

SIMULATION OF POWER SYSTEMS

Figura 2.1 Diagrama Unifilar

b.- Determine la generación para satisfacer la demanda, la demanda existente es:

D = 15 + 10 + 10 = 35 MWGeneración Disponible: Gen = 20 + 20 + 20 = 60 MW

c.- Ejecute el programa de Flujos de Potencia y analice los resultados de nodos conexión y el balance global del sistema

d.- que acciones de control requiere realizar para cumplir las condiciones operativas.

e.- Determine cuál es la posición optima de los taps, para los transformadores de generación y carga, porque?

AT1: Tap a 1.025 BT2: Tap a 1.025 CT3: Tap a 0.975 DT4: Tap a 0.975 ET5: Tap a 0.975

2.2.1. DATOS PARA LA SOLUCION DE FLUJOS DE CARGA DATOS DEL GENERADOR A, B, C:

GENERADOR	Un [kV]	Sn [MVA]	Cosø	Xs [p.u.]	Pmax [MW]
G-A	10	29	0.85	2.33	20
G-B	10	29	0.85	2.33	20
G-C	10	29	0.85	2.33	20

DATOS DE LOS TRANSFORMADORES (TODOS ESTÁN EN BASE PROPIA):

TRANSFORMADOR	U1/U2 [kV]	Sn [MVA]	R1 [p.u.]	X1 [p.u.]
AT1	10/115	30	0.0035	0.1320
BT2	10/115	30	0.0035	0.1320
CT3	10/115	30	0.0035	0.1320
DT4	115/25	30	0.0033	0.0911
ET5	115/10	25	0.0100	0.1000

DATOS DE LAS LÍNEAS DE TRANSMISIÓN:

	U		LONGITUD	R1	X1	B1	Pn
LINEA	[kV]	CONDUCTOR	[KM]	[p.u.]	[p.u.]	[p.u.]	[MVA]
LINEA 1	115	IBIS	6.4	0.00700	0.02080	0.0022	78
LINEA 2	115	IBIS	43.5	0.04780	0.14140	0.0151	78
LINEA 3	115	IBIS	6	0.00660	0.01950	0.0021	78
LINEA 4	115	IBIS	46	0.05050	0.14950	0.0160	78
LINEA 5	115	RAIL	1	0.00050	0.00310	0.0004	124

DATOS DE LAS CARGAS

CARGA	P [MW]	Q [MVAR]	cosφ
B3-010	10	5	0.90
D1-025	10	3	0.95
E1-115	15	6	0.93

2.2.2. CARACTERISTICAS DEL PROGRAMA DE FLUJOS DE POTENCIA

El simulador Power World (Simulador PW) es un paquete de software para análisis y simulación de sistemas de potencia que está asociado a la asignatura que se está tocando. La finalidad de integrar el simulador PW con la materia son proporcionar soluciones por computadora para poder representar los diseños y modelos de los circuitos proyectados dentro el desarrollo de una unidad de proyectos en una empresa de energía eléctrica importante como es el caso de la Empresa de Luz y Fuerza Eléctrica Cochabamba S.A.

Para usar este paquete de software, en primer lugar se instala el simulador PW en una computadora siguiendo las instrucciones que se dan en los archivos electrónicos asociados a los flujos de potencia, después de instalarlo el simulador PW se procederá a proporcionar al programa el modelo de sistema introduciendo los datos del apartado 2.2.1 para el análisis del sistema de potencia

2.2.3. MODO DE EDICIÓN: DIAGRAMA UNIFILAR E INTRODUCCIÓN MODIFICACIÓN DE DATOS

En la figura 2.2 se ilustra cómo se representan los componentes principales de un sistema de potencia en el simulador Power World. Los generadores se muestran como un círculo con un rotor de "hueso para perro", grandes flechas representan las cargas y las líneas de transmisión se dibujan simplemente como rectas, En la terminología de los sistemas de potencia, los nodos en los cuales se unen dos o más dispositivos se llaman buses o barras. En el simulador Power World, las líneas gruesas generalmente representan las barras; las tensiones en las barras se muestran en Kilo volts (kV) en los campos que están inmediatamente a la derecha de ellos. Además de las tensiones, los ingenieros en sistema de potencia también tienen interés en como fluye la energía por el sistema (la solución del problema de flujo de potencia). En el simulador POWER SYSTEMS II Capitulo 3 Flujos de Potencia). En el simulador PW los flujos de potencia se pueden visualizar con las flechas sobre puestas a los generadores, cargas y lineras de transmisión. El tamaño y la rapidez de las flechas indican la dirección del flujo.

SIMULATION OF POWER SYSTEMS

Figura 2.2 Diagrama Unifilar construido en el programa Power World Solucion apartado 2.2

inciso a

2.2.4. MODO DE EJECUCION Y ANALISIS DE LOS RESULTADOS DEL FLUJO DE CARGA

Calculo de parametros de los generadores A,B,C

Un = 10 [kV] Sn = 29 [MVA] Cos ϕ = 0.85 Xs = 2.33 p.u. Pmax = 20 [MW]

SCR = 1/Xs = 1/2.33 = 0.429184549

Introduciendo los datos del generador en el programa GENSIN calculamos los puntos de operación del generador los cuales se encuentran calculados en la Tabla 2.1

🖸 🥏 📙 💆	<u>ы</u>								
NOMBRE DEL	POTENCIA NOMENAL	29	GRAFICA						
LICTOR DE	NOMINAL		Q[Mvar]						
POTENCIA 0	.85 SCR [p.u.]	0.429	29		A				
• LIMITE TEÓ	RICO C GW	BASIC MCCAP	21.7		LIMIT	TE DE CALE	NTAMIEN	ITO DEL ROT	OR
ABLA DE RESUL	TADOS	POTENCIA	14.5				\square	Nom	
ACTIVA [MW]	REACTIVA ADELANTO [MVAR]	REACTIVA ATRASO [MVAR]							
0	-10.13	24.65	7.2		and second	· · · · · · · · · · · · · · · · · · ·	-		
2.9	-9.29	24.54		and the second		2 ¹¹			
5.8	-8.46	24.2	0,0 2.1	9 5.8 8.7	11.6 14	.5 17.4	20.3 23	.2 26.1 29	P[Mw]
8.7	-7.62	23.62		200			++		
11.6	-6.79	22.79	-7.2		LIMITE D	E PRACTIC	O DE EST		
14.5	-5.95	21.7	e de la contra						
17.4	-5.12	20.32	-14.5						
20.3	-4.28	18.6	21.7						
23.2	-3.45	16.5	-21.7	Non	[Mw]	24.65			í.
26.1	-2.61	12.64	.29	Non	ı [Mvar]	15.28			
29	0	0							

Tabla 2.1 Resultados obtenidos Puntos de operación del generador y la gráfica de la curva de capacidad del generador

Calculo de parámetros de los transformadores

Transformadores	U1/U2	Sn[MVA]	R1[p.u.]	X1[p.u.]
AT1	115/10	30	0,0035	0,132
BT2	115/10	30	0,0035	0,132
CT3	115/10	30	0,0035	0,132
DT4	115/25	30	0,0033	0,0911
ET5	115/10	25	0,01	0,1

Tabla 2.2 Datos de los Transformadores

Convertimos de la base propia a la base sistema 100 MVA

AT1, BT2, CT3

R1[p.u.] = 0.0035*100[MVA]/ 30[MVA] = 0.011666667 X1[p.u.] = 0.132*100[MVA]/ 30[MVA] = 0.44

DT4

R1[p.u.] = 0.0033*100[MVA]/ 30[MVA] = 0.011 X1[p.u.] = 0.0911*100[MVA]/ 30[MVA] = 0.303666667

ET5

R1[p.u.] = 0.01*100[MVA]/ 25[MVA] = 0.04 X1[p.u.] = 0.1*100[MVA]/ 25[MVA] = 0.4

Calculo de parámetros de las líneas

En este caso particular no es necesario el cálculo de parámetros de línea, por lo tanto procedemos a introducir los datos al programa Power World

Calculo de parámetros de las cargas

B3-010

P =10 MW; $\cos\varphi = 0.90$ Q = P*tan[$\cos^{-1}(0.9)$] = 10*tan[$\cos^{-1}(0.9)$] = 4.843221048

D1-025

P =10 MW; $\cos\varphi = 0.95$ Q = P*tan[$\cos^{-1}(0.95)$] = 10*tan[$\cos^{-1}(0.95)$] = 3.286841052

E1-115

 $P = 15 \text{ MW}; \cos \varphi = 0.93$ $Q = P*\tan[\cos^{-1}(0.93)] = 15*\tan[\cos^{-1}(0.93)] = 5.928379339$ Con los datos introducidos corremos o simulamos los flujos de potencia en el programa Power World y es como queda de acuerdo a la figura 2.3

Figura 2.3 Aplicación de Flujo de Potencia

b.- Determine la generación necesaria para satisfacer la demanda

La demanda existente es de D = 15 + 10 + 10 = 35 MW La generación Disponible es de G = 20 + 20 + 20 = 60 MW

De acuerdo al flujo de potencia obtenido figura 2.3 solo necesitamos 2 generadores para cubrir la demanda solicitada.

c.- Ejecute el programa de Flujos de Potencia y analice los resultados de nodos conexión y el balance global del sistema

De acuerdo a la pregunta solicitada procedemos a simular los flujos de potencia, los resultados son mostrados en la figura 2.4 para el análisis correspondiente, como referencia se tomó la barra A1-010 como la barra slack.

Figura 2.4 Aplicación de Flujo de Potencia inciso c.-) apartado 2.2 pag. 16

De la figura 2.4 se puede observar los voltajes en las barras si cumplen o no las condiciones mínimas de desempeño

$$(\pm 5\%; 0.95 \le V \le 1.05)$$

La tabla 2.3 muestra los voltajes en p.u. y voltaje en kV de los cuales los números de la tabla barras B3-010 muestra un valor de 0.94076 p.u., 9.408 kV además de la barra D1-0.25 que muestra un valor de =.94203, 23.551 kV NO cumplen con las condiciones mínimas de desempeño

1 M		r mal ne	E O UN			6 · · · · · ·		1.0.1.0	1.41	N 11 1 1	DIFF FAJIET			
		🗗 🛧 🛉 🖍	Abo	t Edit Mod	e Run Mode	Script Mode	Log Sin	gle Solution		■ 11 125	65 * % *			
	UPT. See Sour	PWR #	¥} - 🙀 999	% ₽AN FULL 200 FULL 200	M SAUE +									
	🕵 📧 🛛 🛤	🚜 🛄 🏪	9 🗮 - SORT 🆽	₩ : %	•00 •••									
	Number	Name	Area Name	PU Volt	Volt (kV)	Angle (Deg)	Load MW	Load Mvar	Gen MW	Gen Mvar	Switched Sh	Act G Shunt	Act B Shunt	# Neighbor
1	1	A1-010	1	1.00000	10.000	0.00			15.36	7.59	0.00	0.00	0.00	1
2	4	A2-115	. 1	0.96713	111.220	-3.95					0.00	0.00	0.00	3
3	2	B1-010	1	0.99991	9.999	1.20			20.00	7.97	0.00	0.00	0.00	1
4	5	B2-115	1	0.96644	111.141	-3.97					0.00	0.00	0.00	4
5	8	B3-010	1	0.94076	9.408	-6.37	10.00	4.84			0.00	0.00	0.00	1
6	3	C1-010	1	0.95413	9.541	-4.99			0.00	0.00	0.00	0.00	0.00	1
7	6	C2-115	1	0.95402	109.713	-4.98					0.00	0.00	0.00	4
8	9	D1-025	1	0.94203	23.551	-6.87	10.00	3.29			0.00	0.00	0.00	1
9	7	D2-115	1	0.95431	109.746	-4.96					0.00	0.00	0.00	3
			12.9	0.05075	100 601	E O1	15.00	5 02			0.00	0.00	0.00	

Tabla 2.3 Condiciones minimas de desempeño

La tabla 2.4 muestra los elementos del sistema los cuales ded acuerdo a la simulacion realizada NO se encuentran sobrecargados.

SIMULATION OF POWER SYSTEMS

- F	ile Simulation	Case Informa	ition Options/	Tools LP O	PF Windo	w Help								
2	35 °0 °0 °0	> 🔛 🖉 🔿	? Abort	Edit Mode	Run Mode	Script Ma	de Log	g Single S	olution	◀ ▶	I M DIFF +	TAULT -		
	1 👬 👹 🕷	影讲在中	• 99%	✓ SHEW PAN- FOLL ZODH FOLL CTRL	SRUE +									
	B M (8. 🗆 🏗 🗯			8									
	From Number	From Name	To Number	To Name	Circuit	Status	Xfrmr	From MW	From Mvar	From MVA	Lim MVA	Max Percent	MW Loss	Mvar Los
)	1	A1-010	4	A2-115	1	Closed	Yes	15.4	7.6	17.1	30.0	57.1	0.03	1.29
1	2	B1-010	5	B2-115	1	Closed	Yes	20.0	8.0	21.5	30.0	71.8	0.05	2.04
1	3	C1-010	6	C2-115	1	Closed	Yes	0.0	0.0	0.0	30.0	0.1	0.00	0.00
	4	A2-115	5	B2-115	1	Closed	No	2.1	2.4	3.2	78.0	4.3	0.00	-0.21
	4	A2-115	6	C2-115	1	Closed	No	13.2	3.9	13.8	78.0	18.0	0.10	-1.10
1	5	B2-115	7	D2-115	1	Closed	No	12.0	3.1	12.4	78.0	16.2	0.09	-1.22
1	5	B2-115	8	B3-010	1	Closed	Yes	10.1	5.4	11.4	25.0	45.6	0.06	0.56
	6	C2-115	7	D2-115	1	Closed	No	-1.9	-0.9	2.1	78.0	2.7	0.00	-0.19
ļ.	6	C2-115	10	E1-115	1	Closed	No	15.0	5.9	16.1	124.0	13.0	0.00	-0.02
1	7	02-115	0	D1-025	1	Closed	Ver	10.0	37	10.7	30.0	35.5	0.01	0.38

Tabla 2.4 Sobre Carga del Sistema

Por lo tanto observamos el balance del sistema a traves del flujo de potencia simulado tal como muestra la figura 2.5

Figura 2.5 Flujo de Potencia Balance del Sistema

d.- Que acciones de control requiere realizar para cumplir las condiciones operativas

Se tiene que realizar los siguientes recursos:

1.- Quitar un Generador que está de más, porque consume activos y no es necesario su ejecución.

- 2.- Mover los Taps de los transformadores de generación
- 3.- Mover el ajuste de la excitatriz de los generadores.
- 4.- Mover si es conveniente los taps de los transformadores de carga

(@]|

e.- Determine cuál es la posición optima de los Taps, para los transformadores de generación y carga Porque?

AT1: Tap a 1.025
BT2: Tap a 1.025
CT3: Tap a 0.975
DT4: Tap a 0.975
ET5: Tap a 0.975

Con los valores mostrados podemos optimizar todos los voltajes en las barras del Sistema por lo que a continuación simulamos los flujos de potencia, por lo tanto la figura 2.6 muestra el flujo con los voltajes óptimos.

Figura 2.6 flujo de potencia con voltajes óptimos

La tabla 2.5 muestra los voltajes regulados de acuerdo al flujo de potencia simulado

			Cardina Statistics					1	1.00					
2	<mark>*</mark> *•	5 🖗 😽	🞒 🥐 🔤 Abo	rt Edit Mod	e Run Mode	Script Mode	Log Si	ngle Solution						
OPT.	T T	PUNE H H	4 - 🛛 🔍 99'	% → PRE PAR	SAUE -									
	😫 🚳 🗚	# 0 🖽 🎬	H → 1000 田	85.* ** ×3	.00 +.0									
	Number	Name	Area Name	PU Volt	Volt (kV)	Angle (Deg)	Load MW	Load Mvar	Gen MW	Gen Mvar	Switched Shi	Act G Shunt	Act B Shunt	# Neighbors
1	1	A1-010	1	1.00000	10.000	0.00			15.30	7.24	0.00	0.00	0.00	1
2	4	A2-115	1	0.99497	114.422	-3.74					0.00	0.00	0.00	3
3	2	B1-010	1	1.00000	10.000	1.15			20.00	7.62	0.00	0.00	0.00	1
4	5	B2-115	1	0.99433	114.348	-3.75					0.00	0.00	0.00	4
5	8	B3-010	1	0.99602	9.960	-5.90	10.00	4.84			0.00	0.00	0.00	1
6	3	C1-010	1	0.98234	9.823	-4.71			0.00	0.00	0.00	0.00	0.00	1
7	6	C2-115	1	0.98234	112.969	-4.71					0.00	0.00	0.00	4
8	9	D1-025	1	0.99626	24.906	-6.40	10.00	3.29			0.00	0.00	0.00	1
9	7	D2-115	1	0.98263	113.003	-4.69					0.00	0.00	0.00	3
10	10	E1-115	1	0.98208	112.939	-4.73	15.00	5.93			0.00	0.00	0.00	1

Tabla 2.5 Voltaje Regulados

Por lo tanto La figura 2.7 muestra el balance global del sistema

Figura 2.7 Balance Global del Sistema

Finalmente se pudo ver el comportamiento del sistema, y cómo hacer para su optimización. Se hizo cambio en los Taps de generación (AT1, BT2 a 1.025) y (CT3 a 0.975) y taps en carga (DT4, ET5 a 0.975)

2.3. ACCIONES DE CONTROL PARA CUMPLIR LÍMITES OPERATIVOS DEL SISTEMA

2.3.1. FRECUENCIA

	Condición Normal	Condición de Emergencia
Limites	de 49.75 a 50.25 Hz	de 49.50 a 50.50 Hz

El tiempo acumulado del sistema, por variaciones de frecuencia, debe estar comprendido entre +30 segundos (adelanto) y -30 segundos (atraso) y debe ser corregido por CNDC (centro Nacional de Despacho de Carga) dentro las 24 horas siguientes a su ocurrencia.

2.3.2. TENSION EN BARRAS

Tensión	Condición	Inmediatamente posterior	Post-Contingencia
Nominal	Normal	a una contingencia	
230 kV	de 0.95 a 1.05 pu	de 0.85 a 1.10 pu	de 0.90 a 1.065
115 kV	de 0.95 a 1.05 pu	de 0.85 a 1.10 pu	de 0.90 a 1.065
69 kV	de 0.95 a 1.05 pu	de 0.85 a 1.10 pu	de 0.90 a 1.065

2.3.3. TENSIÓN EN BORNES DEL GENERADOR

	Condición Normal	Inmediatamente posterior a una contingencia	Post-Contingencia
Tensión en Bornes	de 0.95 a 1.05 pu	-	de 0.95 a 1.05 pu

2.3.4. PARÁMETROS DE TRANSMISIÓN

2.3.4.1. CARGA MÁXIMA DE COMPONENTES

Condición	Inmediatamente posterior	Post-Contingencia
Normal	a una contingencia	
100% de la capacidad	Sobre carga para periodos	Sobre carga para periodos
nominal	inferiores a 15 minutos,	mayores a 15 minutos,
	informado por el agente	informado por el agente

Los agentes informaran al CNDC (Centro Nacional de Despacho de Carga) la capacidad de sobrecarga de sus componentes e instalaciones, acompañando la justificación técnica que avale. (®JA

3.1. ASPECTOS GENERALES DE FLUJOS DE POTENCIA ÓPTIMO

El Flujo Optimo de Potencia (OPF) por sus siglas en inglés, es un problema que fue definido en los principios del año 1960 como una extensión del problema de despacho económico de carga convencional, que se utiliza para la determinación óptima de las variables de control en un SEP, considerando variadas restricciones. OPF, en su formulación general, es un problema de optimización con función objetivo y restricciones no lineales, que representa la operación en estado estacionario del sistema eléctrico. Dos objetivos básicos se deben cumplir en la operación de un sistema eléctrico de potencia: i) Asegurar una operación segura, y ii) Encontrar un punto de operación económico.

La operación económica significa reducir los costos por la utilización de la energía eléctrica, esto incluye los costos de producción, transporte y consumo. A pesar de que los costos de transporte de la energía eléctrica hacia los centros de consumo, podría representar un pequeño porcentaje de los gastos totales de operación.

La aplicación de técnicas de optimización a los problemas de planificación y operación de SEP (Sistema Eléctrico de Potencia), como lo es OPF, es una activa área de investigación. De esta forma, OPF puede ser visto como un término genérico que describe una amplia gama de clases de problemas en los cuales se busca optimizar una función objetivo específico, sujeto a restricciones que representan los balances de potencia activa y reactiva en los nodos de la red, en función de las tensiones y ángulos de las barras.

Un estudio de flujos de potencia óptimo es utilizado ampliamente en la industria eléctrica para diferentes aplicaciones, que van desde estudios de planeación hasta operación de los sistemas. El principal objetivo de un OPF es optimizar las condiciones de operación en estado estacionario de un sistema eléctrico de potencia. Un OPF ajusta las cantidades controlables para optimizar una función objetivo mientras satisface un conjunto de restricciones operativas.

Una función objetivo puede incorporar aspectos económicos, de seguridad o medioambientales, que se resuelve utilizando técnicas de optimización adecuadas. Las

restricciones son leyes físicas que gobiernan a los generadores, el sistema de transmisión, límites constructivos de los equipos eléctricos y estrategias operativas. Esta clase de problema es expresado como un problema de programación no lineal, con la función objetivo expresada como una función no lineal, y las restricciones expresadas como ecuaciones lineales y no lineales.

3.2. DESPACHO ECONOMICO CLASICO

El problema del "despacho económico clásico" consiste en determinar la potencia que debe suministrar cada unidad generadora en servicio para una demanda determinada P_D, con el objetivo de minimizar el costo total de generación. Para ello, es necesario conocer los costos variables de los combustibles, los rendimientos térmicos de las unidades, la red de transmisión, etc.

3.2.1. CARACTERISTICAS DE LAS UNIDADES GENERADORAS

La descripción de una unidad térmica -generadora comienza con la especificación de la cantidad de calor de entrada requerida para producir una cantidad de energía eléctrica como salida.

Así, la característica Entrada – Salida de la unidad-generadora, tiene forma cuadrática - convexa, como en la figura 3.1. En el eje de ordenadas esta la entrada de calor **H** [Btu/h] y en el eje de abscisas, la potencia de salida **P** [kW].

Así, la función cantidad de calor H es igual a la siguiente expresión:

$$H = a + b P + c P^2 \qquad [Btu/h]$$

Multiplicando la cantidad de calor H por el costo de combustible se obtiene la función costo de combustible F [\$US/h]. El costo total de producción incluye el costo de combustible, el consumo propio y el costo de operación - mantenimiento. Se asume que esos costos son un valor o porcentaje fijo del costo de combustible y generalmente se incluyen en la curva costo de combustible.

Esta información se obtiene, a partir de pruebas que se realizan al grupo turbina-generador, para varios niveles de potencia de salida (100%, 75% y 50%). La tasa de calor o Heat Rate (**HR**), se define como la relación entre la entrada de calor en Btu/h dividido por la potencia de salida en kW.

HR = H/P [Btu/kWh]

El Heat Rate es el reciproco de la eficiencia o rendimiento. Se observa en la figura 3.2, que la máxima eficiencia de la unidad se obtiene en el mínimo de la función HR, que se da para valores próximos a la potencia máxima.

Fig. 3.2 Tasa de calor o Heat Rate

El Costo Incremental de Combustible (IC) es igual a la derivada de la función costo.

IC = dF/dP = b + 2c P [\$US/kWh]

El **Costo Medio de Producción** es igual a la división de la función costo total de producción por la potencia máxima de salida. Es decir:

Costo Medio = F/P [\$US/kWh]

3.2.2. CÁLCULO DEL HEAT RATE

Una información importante, para el cálculo de las funciones costo es el dato del Heat Rate de la turbina, determinada en sitio, a partir de pruebas efectuadas al grupo turbinas a gasgenerador. En la figura 3.3, se observa, que los datos a ser tomados durante las pruebas son las siguientes: temperatura del aire de entrada al filtro de aire de la turbina (temperatura ambiente), presión atmosférica en el sitio, volumen de gas que ingresa a la cámara de combustión, potencia y energía activa de salida del generador, medida en bornes, etc.

Fig. 3.3 Esquema de medición de la prueba

3.2.3. CÁLCULO DE LA FUNCIÓN COSTO DE COMBUSTIBLE

La función costo de combustible (**F**), se determina a partir de las pruebas antes mencionadas, con la siguiente información:

- Temperatura ambiente en [°C]
- Presión atmosférica del sitio en [mbar]
- Poder calorífico inferior del gas [Btu/PC]
- Costo del combustible en [\$US/Btu]
- Potencia de salida del generador en [kWh]
- Heat Rate en [Btu/kWh] para tres estados de operación de la máquina, que son 100%, 75% y 50% de carga.

La función consumo de combustible generalmente se representa como una función convexa cuadrática, de la forma,

 $H_i = a_i + b_i PG_i + c_i PG_i^2$

El consumo de calor o rendimiento térmico (Heat Rate), fue antes definido de la siguiente manera.

$$HR_i = H_i / PG_i$$

Luego, igualando con la expresión del consumo de combustible se obtiene,

$$H_i = HR_i \times PG_i = a_i + b_i PG_i + c_i PG_i^2$$

En esta ecuación cuadrática, son conocidos los rendimientos térmicos para los tres estados de carga mencionados y las potencias de salida respectivas, siendo solo incógnitas los coeficientes de la función (a_i, b_i, c_i).

Normalmente estos valores se presentan en una tabla expresada para diferentes temperaturas ambiente y potencias de salida. Pero lo más conveniente es conocer estos valores para condiciones ISO de operación, cuya conveniencia se verá en un ejemplo.

3.3. UNIT COMMITMENT (CONCEPTO BÁSICO)

El Unit Commitment consiste en la programación de arranques y paradas de unidades térmicas, determinando cuando están en servicio y cuanto generan en cada periodo. El objetivo es optimizar los costos de producción, teniendo en cuenta la evolución de la demanda a cubrir por las unidades térmicas a lo largo del horizonte de la programación.

Si se supone que el horizonte de la programación es de 24 horas y que existen N_g unidades térmicas, el programa óptimo de generación se obtiene a partir de la solución del siguiente problema de optimización

$$\begin{split} & Min\sum_{i=1}^{Ng} \left[A_i + \sum_{t=1}^{24} F_{i,t} \right] \\ & \text{s.a.} \\ & P_C = \sum_{i=1}^{Ng} P_{i,t} \qquad i = 1, \dots, N_g \\ & P_i = \left[P_i^{min}, P_i^{max} \right] \end{split}$$

Donde

 $F_{i,t}$ = costo de generación del generador i en la hora t

 A_i = costo de arranque y parada de la central

3.4. FORMULACIÓN BÁSICA DEL FLUJO DE POTENCIA ÓPTIMO

Analizar la Operación real del Sistema Eléctrico de Potencia de la figura 3.4 usando el módulo de Flujos de Potencia Optimo del programa Power World.

a.- Construya el diagrama unifilar de la figura 3.4 en el programa Power World con la información necesaria de cada elemento del sistema eléctrico de potencia de acuerdo al apartado 3.5

Figura 3.4 Diagrama unifilar

b.- De acuerdo al diagrama unifilar 3.4 se tiene 4 unidades térmicas de generación cuyos datos están en la tabla 3.1. Determine la programación óptima de unidades del sistema y el despacho económico.

Unidad	Función costo [US/h]	Pmax [MW]
C1	$0.10P_1^2 + 12P_1 + 60$	18
C2	$0.12P_2^2 + 12P_2 + 32$	9
C3	0.10P ₃ ² + 11P ₃ + 30	9
C4	$0.20P_4^2 + 13P_4 + 90$	20

Tabla 3.1 Funciones de costo unidades térmicas

c.- Ejecute el programa de Flujos de Potencia y analice los resultados de nodos de conexión y

el balance global del sistema

(®JA

- d.- Calcule los ingresos y retiros valorizados
- e.- Realice el análisis de Seguridad N-1 Simulación de contingencias

3.5. DATOS PARA LA SOLUCION DEL PROBLEMA

DATOS DE LOS GENERADOR HIDRAULICOS:

GENERADOR	Un [kV]	Sn [MVA]	Cosø	SCR [p.u.]	Pmax [MW]
G-A1	10	29	0.85	0.43	10
G-B1	10	29	0.85	0.43	12

DATOS DE LOS GENERADORES TERMICOS:

GENERADOR	Un [kV]	Sn [MVA]	Cosø	SCR [p.u.]	Pmax [MW]
G-C1	10	29	0,85	0,43	18
G-C2	10	29	0,85	0,43	9
G-C3	10	29	0,85	0,43	9
G-C4	10	29	0,85	0,43	20

DATOS DE LOS TRANSFORMADORES DE GENERACION (EN BASE SISTEMA):

	U1/U2	Sn [MVA]	R1	X1
TRANSI ORMADOR			լթ.ս.յ	լթ.ս.յ
AT1	10/115	30	0.01167	0.4400
BT1	10/115	30	0.01167	0.4400
CT1	10/115	25	0.02400	0.4000
CT2	10/115	12	0.10417	0.8333
CT3	10/115	12	0.10417	0.8333
CT4	10/115	30	0.01667	0.3333

DATOS DE LOS TRANSFORMADORES DE CARGA (EN BASE SISTEMA):

TRANSFORMADOR	U1/U2 [kV]	Sn [MVA]	R1 [p.u.]	X1 [p.u.]
DT1	115/25	30	0.01100	0.30367
ET1	115/10	25	0.04000	0.40000

LINEA	U [kV]	CONDUCTOR	R1 [p.u.]	X1 [p.u.]	B1 [p.u.]	Pn [MVA]
LINEA 1	115	IBIS	0.00700	0.02080	0.0022	78
LINEA 2	115	IBIS	0.04780	0.14140	0.0151	78
LINEA 3	115	IBIS	0.00660	0.01950	0.0021	78
LINEA 4	115	IBIS	0.05050	0.14950	0.0160	78
LINEA 5	115	RAIL	0.00050	0.00310	0.0004	124

DATOS DE LAS LINEAS DE TRANSMISION:

DATOS DE LAS CARGAS:

CARGA	P [MW]	Q [MVAR]	cosφ
B3-010	12.5	6.05	0.90
D1-025	12.5	4.11	0.95
E1-115	18.75	7.41	0.93

3.5.1. DIAGRAMA UNIFILAR

Respuesta inciso a.- apartado 3.4 se construye el diagrama unifilar de la figura 3.4 en el programa Power World con la información necesaria de cada elemento del sistema eléctrico de potencia de acuerdo al apartado 3.5 Figura 3.5

Figura 3.5 Diagrama Unifilar Construido en el Programa Power World

3.5.2. CÁLCULO DE DESPACHO ECONÓMICO

Respuesta inciso b.- apartado 3.4. Se procede al cálculo de la programación óptima de unidades del sistema y el despacho económico.

3.5.2.1. CÁLCULO DE LA DEMANDA REQUERIDA

Demanda = B3-010 + D1-025 + E1-115 Demanda = 12.5 [MW] + 12.5 [MW] + 18.75 [MW] Demanda = 43.75 [MW]

3.5.2.2. CÁLCULO DE LA GENERACIÓN INYECTADA

Central Hidráulica

Central A = 10 [MW] Central B = 12 [MW] Total Gen Hidro = 22 [MW]

Central Térmica

Calculamos la generación térmica que se requiere.

Gen Termo + Gen Hidro = Demanda Gen Termo = Demanda - Gen Hidro Gen Termo = 43.75 [MW] – 22 [MW] Gen Termo = 21.75 [MW]

3.5.2.3. CALCULO DE LA FUNCIÓN COSTO

 $Fi = Hi^*C_{comb} [\$/h]$ Costo Combustible 1.76 [\$/h] $F_{G1} = 1.76^*(0.1P_1^2 + 12P_1 + 60)$ $F_{G1} = 0.176P_1^2 + 21.12P_1 + 105.6$ $F_{G1} = [0.176(18)^2 + 21.12 (18) + 105.6] = 542.784 [\$/h]$ $F_{G2} = 1.76^*(0.12P_2^2 + 12P_2 + 32)$ $F_{G2} = 0.2112P_2^2 + 21.12P_2 + 56.32$ $F_{G2} = [0.2112 (9)^2 + 21.12 (9) + 56.32] = 263.491 [\$/h]$

$$\begin{split} F_{G3} &= 1.76^*(0.1P_3{}^2 + 11P_3 + 30) \\ F_{G3} &= 0.1762P_3{}^2 + 19.36P_3 + 52.8 \\ F_{G3} &= [0.176\ (9)^2 + 19.36\ (9) + 52.8] = 241.296\ [\$/h] \\ F_{G4} &= 1.76^*(0.2P_4{}^2 + 13P_4 + 90) \\ F_{G4} &= 0.3522P_4{}^2 + 22.88P_4 + 158.4 \\ F_{G4} &= [0.352\ (20)^2 + 22.88\ (20) + 158.4] = 756.88\ [\$/h] \end{split}$$

3.5.2.4. CALCULO DEL COSTO MEDIO

(®JA

$$\begin{split} \dot{F} &= F_i / P_{max} \ [\$/MWh] \\ \dot{F}_{G1} &= 542.784 \ [\$/h] / 18 \ [MW] = 30.15 \ [\$/MWh] \\ \dot{F}_{G2} &= 263.491 \ [\$/h] / 9 \ [MW] = 29.28 \ [\$/MWh] \\ \dot{F}_{G3} &= 241.296 \ [\$/h] / 9 \ [MW] = 26.81 \ [\$/MWh] \\ \dot{F}_{G4} &= 756.88 \ [\$/h] / 20 \ [MW] = 37.84 \ [\$/MWh] \end{split}$$

Teniendo los costos medios calculados, las máquinas que cumplen la programación del despacho económico óptimo en orden de méritos son los generadores G3 y G2.

3.6. NODOS DE CONEXION BALANCE GLOBAL DEL SISTEMA

Dando respuesta a la pregunta solicitada inciso c.- apartado 3.4 procedemos a simular los flujos de potencia, los resultados son mostrados en la figura 3.6 para el análisis correspondiente.

Figura 3.6 Flujo de Potencia del Sistema NO Optimo

SIMULATION OF POWER SYSTEMS

2	🐱 🖬 🐚	° 🖓 😼	🚭 🥐 🛛 Abo	rt Edit Mo	de Run Mode	Script Mode	Log Sin	gle Solution	I	► II 👎				
			V - 68	% 👻 FULL P	AN- DOM SAVE +				-0-					
	B A	* #	🗰 - 1120 🎟	B [∞] _{Σ×} +⊧ *.8	÷98									
	Number	Name	Area Name	PU Volt	Volt (kV)	Angle (Deg)	Load MW	Load Mvar	Gen MW	Gen Mvar	Switched Sh	Act G Shunt	Act B Shunt	# Neighbors
1	1	A1-010	1	1.00000	10.000	26.23			10.00	3.93	0.00	0.00	0.00	1
2	2	A2-115	1	0.98250	112.987	23.69					0.00	0.00	0.00	3
3	3	B1-010	1	1.00000	10.000	26.69			12.00	4.22	0.00	0.00	0.00	1
1	4	B2-115	1	0.98141	112.862	23.64					0.00	0.00	0.00	4
5	5	C2-115	1	0.97892	112.576	23.32					0.00	0.00	0.00	7
5	6	C1-010	1	0.97892	9.789	23.32			0.00	0.00	0.00	0.00	0.00	1
0	7	D2-115	1	0.97778	112.445	23.24					0.00	0.00	0.00	3
8	8	D1-025	1	0.96262	24.065	20.96	12.50	4.11			0.00	0.00	0.00	1
)	9	E1-115	1	0.97859	112.538	23.29	18.75	7.41			0.00	0.00	0.00	1
0	10	B3-010	1	0.94936	9.494	20.71	12.50	6.05			0.00	0.00	0.00	1
1	11	C3-010	1	1.01000	10.100	27.49			9.00	2.96	0.00	0.00	0.00	1
12	12	C4-010	1	0.97892	9.789	23.32			0.00	0.00	0.00	0.00	0.00	1
13	13	C5-010	1	1.01000	10.100	26.25			13.07	7.39	0.00	0.00	0.00	1

Tabla 3.2 Voltajes en barras de 10 kV y 115 kV no óptimos

La figura 3.6 y la tabla 3.2 muestran caídas de voltajes en las barras de 10 y 115 kV debido a que la regulación en los taps de los transformadores no son los adecuados por lo tanto el sistema no se encuentra con valores de voltaje adecuados.

A continuación se muestra el balance global del sistema la figura 3.7:

Figura 3.7 Balance Global del Sistema NO Optimo

Aplicamos las acciones de control requeridas para cumplir las condiciones de operación mínimas del sistema.

Por lo tanto se realizara un ajuste en la posición de los taps, para los transformadores de generación y carga de acuerdo al siguiente detalle:

AT1: Tap a 1.02500 BT1: Tap a 1.02500 CT1: Tap a 1.00000 CT2: Tap a 1.00000 CT3: Tap a 1.00000 CT4: Tap a 1.00000 DT1: Tap a 0.97500 ET1: Tap a 0.97500

Con estas acciones corregidas en los taps de los transformadores corremos flujos y se obtiene el sistema óptimo así como se muestra en la figura 3.8

Figura 3.8 Flujo de Potencia del Sistema Optimo

Se puede ver la mejoría en los valores de tensión en las barras Tabla 3.3

J F	ile Simulatio	on Case Info	rmation Optio	ns/Tools LP	OPF Windo	w Help								
2	<mark>2 1</mark> 1	° 🖓	🔿 🥐 🛛 Abo	rt Edit Mo	le Run Mode	e Script Mode	Log Si	ngle Solution	•		DIFF - FAULT -			
	UPT. Mar Star	PLOW # 1	V - 68	% - Pitt 2	N- SAUE +									
		M 🗆 🎬	₩ • SORT Ⅲ	85× ** ***	.00 ↓.0									
	Number	Name	Area Name	PU Volt	Volt (kV)	Angle (Deg)	Load MW	Load Mvar	Gen MW	Gen Mvar	Switched Sh	Act G Shunt	Act B Shunt	# Neighbor
t i	1	A1-010	1	1.00000	10.000	26.16			10.00	6.05	0.00	0.00	0.00	1
2	2	A2-115	1	0.99749	114.712	23.61					0.00	0.00	0.00	3
6	3	B1-010	1	1.00000	10.000	26.63			12.00	6.33	0.00	0.00	0.00	1
	4	B2-115	1	0.99647	114.594	23.56					0.00	0.00	0.00	4
6	5	C2-115	1	0.99077	113.938	23.32					0.00	0.00	0.00	7
ŝ.	6	C1-010	1	0.99077	9.908	23.32			0.00	0.00	0.00	0.00	0.00	1
ē.	7	D2-115	1	0.99003	113.854	23.23					0.00	0.00	0.00	3
ł.	8	D1-025	1	1.00089	25.022	21.12	12.50	4.11			0.00	0.00	0.00	1
)	9	E1-115	1	0.99044	113.901	23.29	18.75	7.41			0.00	0.00	0.00	1
0	10	B3-010	1	0.99142	9.914	20.87	12.50	6.05			0.00	0.00	0.00	1
1	11	C3-010	1	1.01000	10.100	27.52			9.00	1.53	0.00	0.00	0.00	1
12	12	C4-010	1	0.99077	9.908	23.32			0.00	0.00	0.00	0.00	0.00	1
13	13	C5-010	1	1.01000	10.100	26.25			13.05	4.40	0.00	0.00	0.00	1

Tabla 3.3 Voltajes Óptimos del Sistema de Potencia

Por lo tanto el balance global del sistema optimo a traves del flujo de potencia simulado es como muestra la figura 3.9

Figura 3.9 Balance Global del Sistema Optimo

3.6.1. CALCULO DE INGRESOS Y RETIROS VALORIZADOS

Para determinar el calculo de los ingresos y retiros valorizados del sistema de potencia optimo se debe tener en cuenta los valores de la Función Costo (Fi))y el Costo incremental (lambda) del generador Slack de acuerdo a la tabla 3.4

wervirond 5	imulator 8.0 OF	F, ATC. For use	only by st	all and stud	ents of s	te licensed U	viversities Sta	ous Paused	- IGen Rec	ords Cost Data	0.									health
le Simula	tian CaseInfo	imation Dpti	ns/Tooh	LP OPF	Window	Help														
2 10 1	8 2 0	@ ? Ma	H Edk	Mode Ru	. Hode	Script Mode	Log Single	Solution		SH 1994	5 • "§" • [
3 AD 1	照相社	S. O.F.	S + 1	ty life i mt																
Ti dati i	NAS -1 1	ine bill erer	42.1.4	A 10 - 10 -																
		- III - III - 1999	1.0																	
A NEW YOR	- 1575 E. III	1 m - 110 m	HEN AL.	.40. +10																
mamber	fiome	Area Name	10	Status	AGC	Ges HW	Cost Hodes	BOA	108	100C	100	Convex?	Plin MW	Place PHW	FuelType	Foel Cost	Cost 5.04	IK.	LossSens	Lambda
fumber	None A1-010	Area Name	10	Status	AGC	Gen HW	Cost Hodel	100.00	108	00C	100	Convex? 1725	File 2900	2100.00	Fuel Type Unknown	Foel Cost	Cost 5/H	IIC D.DO	LossSens 0.0000	Lambda 0.00
flamber 1 3	A1-010 82-010	Arca Name	10 10	States Closed	AGC NO NO	Gen HW 20.00 12.00	Cost Hodel Cubic	100.00 100.00	108 10.000 10.000	00C 0,0100 0.0100	0.00000	Convex? YES YES	0.00	2100.00 100.00	Fuel Type Unknown	Foel Cost 0.00	Cost 5/Hr 0.00	1K 0.00	Loss5ess 0.0000 0.0000	Lambda 0.00 0.00
fumber 1 3	100000 100000 11-010 11-010 01-010	Arca Name I 1	10 1 1	Status Closed Open	AGC NO NO	Ges HW 20.00 12.00 0.00	Cost Hodes Cubic Cubic Cubic	100A 100.00 100.00 100.00	108 10.000 10.000 13.000	00C 0,0100 0,0100 0,0100	000 0.00000 0.00000 0.00000	Convex2 YES YES	0.00 0.00 0.00	Plax PW 100.00 100.00 100.00	Fuel Type Unknown Unknown	Foel Cost 0.00 0.00	Cost 5/Hr 0.00 0.00	0.00 0.00	Loss5ens 0.0000 0.0000 0.0000	Lambda 0.00 0.00 0.00
flumber 1 3 1 11	A1-010 #1-010 C1-010 C3-010	Area Name I I I I I	10 1 1 1	Status Closed Open Closed	AGC NO NO NO	Gen HW 20.00 12.00 0.00 9.00	Cost Hodes Cubic Cubic Cubic Cubic	100.00 100.00 100.00 100.00 30.00	108 10.000 10.000 11.000 11.000	00C 0,0100 0,0100 0,0100 0,000	0.00000 0.00000 0.00000 0.00000 0.00000	Convex? YES YES YES YES	Plin (9%) 0,00 0,00 0,00 0,00	Place #WW 100.00 100.00 100.00 100.00	Fuel Type Unknown Unknown Unknown Unknown	Foel Cost 0.00 0.00 0.00 0.00	Cost 5/14 0.00 0.00 0.00 0.00	1K 0.00 0.00 0.00 0.00	LossSens 0.0000 0.0000 0.0000 0.0000	Lambda 0.00 0.00 0.00 0.00
Rumber 1 3 5 11 12	A1-010 A1-010 0.1 010 0.1 010 0.3-010 0.4-010	Area Name I I I I I I I I	10 10 1 1 1 1 1	Status Closed Open Closed Open	AGC 800 160 180 180	Ges HW 20.00 12.00 0.00 9.00 0.00	Cost Hodef Cubic Cubic Cubic Cubic Cubic Cubic	100A 100.00 100.00 10.00 10.00 30.00 12.00	10.000 10.000 11.000 11.000 11.000 32.000	00C 0,0100 0,0100 0,0000 0,0000 0,1200	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	Convex? YES YES YES YES YES	File (W) 0.00 0.00 0.00 0.00 0.00	Place HW 100.00 100.00 100.00 100.00 100.00	Evel Type Unknown Unknown Unknown Unknown Unknown	Fuel Cost 0,00 0.00 0.00 0.00 0.00 0.00	Cost 5,04 0.00 0.00 0.00 0.00 0.00	10C 0.00 0.00 0.00 0.00	LossSens 0.0000 0.0000 0.0000 0.0000 0.0000	Lambda 0.00 0.00 0.00 0.00 0.00

Tabla 3.4 Valores de la Funcion Costo y Costo Incremental Lambda

Tambien se debe tener en cuenta para el calculo de ingresos y retiros valorizados los factores de pérdidas en cada barra asi como muestra la tabla 3.5

SIMULATION OF POWER SYSTEMS

🕻 File	Simulation	Case Information	Options/7	fools LP OPF	Window He	elp							
8	6 6	P 🗸 🖨 🤉	Abort	Edit Mode	Run Mode Scri	pt Mode	Log Sing	le Solution		DIFF -	rautt -		
B U		世堂号・	68%	▼ SHED PAN- FOLL ZODM FOLL CTEL	ande -				1.396				
	A A	. 🗔 🖽 🗯 • 🕴	MT Ⅲ 88.	*** ***									
pecify Lo	ss Function						16-1 2	1	1				
				Jaulate Rue Mar	ninal Loop Condition	tion all							
Loss Fur	nction Type			iculate bus Mar	jinai coss densiovi	ues i			<u>p</u>				
Loss Fur None Each	nction Type e I Island		Buses	Just Generato	rs			<u>f</u> <u>i</u> e	9	5			- 11
Loss Fur None Each Each	nction Type 1 Island Area		Buses	Just Generato	rs Name	A ID	Status	Loss MW Sens	Penalty Factor	Gen MW	Min MW	Max MW	Gen Mvar
C None C None C Each C Each C Each	iction Type Island Area Area or Super	Area	Buses	Just Generato	ns Name	A ID	Status Closed	Loss MW Sens 0.0003	Penalty Factor 1.0003	Gen MW 10.00	Min MW 0.00	Max MW 100.00	Gen Mvar 6.05
Loss Fur None Each Each Each C Each C Selev	iction Type Island Area Area or Super cted Areas	Area	Buses	Just Generato	Name A1-010 B1-010	▲ ID 1 1	Status Closed Closed	Loss MW Sens 0.0003 0.0001	Penalty Factor 1.0003 1.0001	Gen MW 10.00 12.00	Min MW 0.00 0.00	Max MW 100.00 100.00	Gen Mvar 6.05 6.33
Loss Fur None Each Each Each Select	iction Type Island Area Area or Super cted Areas	Area	Buses	Just Generato	rs Name A1-010 B1-010 C1-010	▲ ID 1 1	Status Closed Closed Open	Loss MW Sens 0.0003 0.0001 -0.0066	Penalty Factor 1.0003 1.0001 0.9935	Gen MW 10.00 12.00 0.00	Min MW 0.00 0.00 0.00	Max MW 100.00 100.00 100.00	Gen Mvar 6.05 6.33 0.00
Coss Fur None Each Each Each Selea	iction Type I Island Area Area or Super cted Areas Selected Ar	Area	Buses	Just Generato	rs Name A1-010 B1-010 C1-010 C3-010	▲ ID 1 1 1	Status Closed Closed Open Closed	Loss MW Sens 0.0003 0.0001 -0.0066 0.0125	Penalty Factor 1.0003 1.0001 0.9935 1.0127	Gen MW 10.00 12.00 0.00 9.00	Min MW 0.00 0.00 0.00 0.00	Max MW 100.00 100.00 100.00 100.00	Gen Mvar 6.05 6.33 0.00 1.53
Loss Fur None Each Each Each Seler Lumber	Inction Type Island Area Area or Super Inter Areas Selected Areas	Area reas	Buses	Just Generato Number 1 3 6 11 12	rs Name A1-010 B1-010 C1-010 C3-010 C4-010	▲ ID 1 1 1 1 1	Status Closed Closed Open Closed Open	Loss MW Sens 0.0003 0.0001 -0.0066 0.0125 -0.0066	Penalty Factor 1.0003 1.0001 0.9935 1.0127 0.9935	Gen MW 10.00 12.00 0.00 9.00 0.00	Min MW 0.00 0.00 0.00 0.00 0.00	Max MW 100.00 100.00 100.00 100.00 100.00	Gen Mvar 6.05 6.33 0.00 1.53 0.00

Tabla 3.5 Factores de perdida en barras de Generación

Con los factores de perdida en las barras de generación procedemos a calcular el Factor de nodo que es:

Con el Factor de nodo calculamos el precio del nodo que viene a ser el costo Marginal multiplicado por el Factor de Nodo

$$P_n = C_{marginal} * F_{nodo}$$

Finalmente se debe incluir los datos de potencia de la carga para el cálculo de los retiros valorizados de acuerdo a la tabla 3.6

) Fi	le Simulatio	n Case Infor	mation (Options/Tools L	P OPF Window	v Help							
\$	<mark>* 19 19 1</mark>	Ъ 🖻 🖉 е	🤧	Abort Edit Ma	de Run Mode	Script Mode	Log Si	ingle Solution	<	► II 1	DIFF + TAUET -		
		PWE # 1 1	9 - C	68% - ME	Seut -								
_	ALL			A CONTRACT OF A	3 King to the second								
		A. 🗆 🏪		□ □ □ □									
	Number	Ala 🖸 🎬	= = :::::::::::::::::::::::::::::::::::	⊞ ⊞x ₩ tal	1 ;00	Mvar	MVA	SMW	5 Mvar	IMW	I Mvar	Z MW	Z Mvar
	Number 10	₩a 🛄 🎬 Name 🖌 B3-010		TI III B∑× IN to Status Closed	MW 12.50	Mvar 6.05	MVA 13.89	5 MW 12.50	5 Mvar 6.05	I MW 0.00	I Mvar 0.00	Z MW 0.00	Z Mvar 0.00
	Number 10 8	Name A B3-010 D1-025	■ - 10 1 1	E E A A A A A A A A A A A A A A A A A A	MW 12.50 12.50	Mvar 6.05 4.11	MVA 13.89 13.16	5 MW 12.50 12.50	5 Mvar 6.05 4.11	I MW 0.00 0.00	I Mvar 0.00 0.00	Z MW 0.00 0.00	Z Mvar 0.00 0.00

Tabla 3.6 Datos de carga del Sistema

Para hallar los ingresos y retiros valorizados necesitamos el costo medio de la unidad que margina el cual fue calculado en el apartado 3.5.2.4 que es la maquina G3

$$\dot{F}_{G3} = \dot{F}/P = 241.296 [\$/h]/9 [MW] = 26.81 [\$/MWh]$$

Los factores de penalización, se hallan haciendo correr un flujo de potencia (modo RUN) del simulador Power World. Ingresamos al menú Options/Tools sección Other

Sensitivities/Losses, en la ventana Losses, marcamos Each Área como se muestra en la siguiente tabla 3.7

Specify Lo		114	Ca	lculate Bus M	larginal Loss S	ensitivities	Close	7 Help	e []	
C Non	e a Island		Buses	Just Gener	ators					
· Each	n Area			Number	Name	Area Num	Area Name	Loss MW Sens	Penalty Factor	Loss Mvar Se
C Each	Area or Supe	r Area	1	1	A1-010	1	1	0.0003	1.0003	0.0000
C Selected Areas			2	2	A2-115	1	1	-0.0021	0.9979	-0.0010
			3	3	B1-010	1	1	0.0001	1.0001	0.0000
	Selected /	Areas	4	4	B2-115	1	1	-0.0029	0.9971	-0.0014
lumber	Name	Include?	5	10	B3-010	1	1	-0.0133	0.9869	-0.0071
1	1	No	6	6	C1-010	1	1	-0.0066	0.9935	-0.0038
-	*		7	5	C2-115	1	1	-0.0066	0.9935	-0.0038
			8	11	C3-010	1	1	0.0125	1.0127	0.0000
			9	12	C4-010	1	1	-0.0066	0.9935	-0.0038
			10	13	C5-010	1	1	0.0000	1.0000	0.0000
			11	8	D1-025	1	1	-0.0108	0.9894	-0.0051
			12	7	D2-115	1	1	-0.0077	0.9924	-0.0040
			13	9	E1-115	1	1	-0.0068	0.9933	-0.0038

Tabla 3.7 Bus Marginal Loss Sensitivities

Luego calculamos el factor de penalización (Penalty Factor) dando un clic en Calculate Bus Marginal Loss Sensitivities y se obtiene la tabla 3.8, donde se añade el factor de Nodo que es el inverso del factor de penalización.

Numero de Nodo	Nombre	Loss MW Sens	Penalty Factor	Loss Mvar Sens	Factor de Nodo
1	A1-010	0.0003	1.0003	0	0.99970009
2	A2-115	-0.0021	0.9979	-0.001	1.00210442
3	B1-010	0.0001	1.0001	0	0.99990001
4	B2-115	-0.0029	0.9971	-0.0014	1.00290843
10	B3-010	-0.0133	0.9869	-0.0071	1.01327389
6	C1-010	-0.0066	0.9935	-0.0038	1.00654253
5	C2-115	-0.0066	0.9935	-0.0038	1.00654253
11	C3-010	0.0125	1.0127	0	0.98745927
12	C4-010	-0.0066	0.9935	-0.0038	1.00654253
13	C5-010	0	1	0	1
8	D1-025	-0.0107	0.9894	-0.0051	1.01071356
7	D2-115	-0.0077	0.9924	-0.004	1.0076582
9	E1-115	-0.0068	0.9933	-0.0038	1.00674519

Tabla 3.8 Factor de Penalización y el Factor de Nodo

Numero de Nodo	Nombre	Estado	Gen [MW]	Factor de Nodo	P nodo [\$/MW*h]	IV [\$/h]	Función Costo [\$/h]	Utilidad [\$/h]
1	A1-010	Closed	10	0,99970009	17,9011431	179,011431	0	179,011431
3	B1-010	Closed	12	0,99990001	17,9047229	214,856675	0	214,856675
6	C1-010	Open	0	1,00654253	18,0236672	0	0	0
11	C3-010	Closed	9	0,98745927	17,6819526	159,137574	0	159,137574
12	C4-010	Open	0	1,00654253	18,0236672	0	0	0
13	C5-010	Closed	13,05	1	17,9065134	233,68	233,68	0
						786,685679		

Hallamos el precio de Nodo, la inyección valorizada y la utilidad de los generadores

Tabla 3.9 Precio de Nodo, Costo de Operación y la Utilidad de los Generadores

C marginal 17,9065134

Para el Generador que margina la utilidad es cero tal como se aprecia en la tabla 3.9

Finalmente con los datos de carga MW y el precio del nodo [\$/MWh*h] calculamos el Retiro Valorizado de acuerdo a la tabla 3.10

Numero de Nodo	Nombre	Estado	Carga [MW]	Carga [Mvar]	Factor de Nodo	P nodo [\$/MW*h]	RV [\$/h]
10	B3-010	Closed	12,5	6,05	1,01327389	18,1442025	226,802531
8	D1-025	Closed	12,5	4,11	1,01071356	18,098356	226,22945
9	E1-115	Closed	18,75	7,41	1,00674519	18,0272963	338,011806
			•	•			791,043786

Tabla 3.10 Calculo del Retiro Valorizado

Esto significa que la carga se cobra el retiro valorizado y con esto se paga a los generadores la inyección valorizada.

Las pérdidas en generación se calculan de la siguiente manera:

Pérdidas = RV [\$/h] - IV [\$/h] =791.043786 - 786.685679 =4.35810668 [\$/h]

Al final se resumen los cálculos hechos:

C marginal	17,9065134
RV [\$/h]	791,043786
IV [\$/h]	786,685679
Perdidas [\$/h]	4,35810668

3.6.2. ANALISIS DE SEGURIDAD N-1 SIMULACION DE CONTINGENCIA

Para simular las contingencias en el programa Power World, podemos hacerlo manualmente o automáticamente, para ambos casos el simulador debe estar en modo RUN e ingresar a la opción Auto Insertion of Contingencies. Las contingencias a ser simuladas será Single transmission line or transformer de acuerdo a la figura 3.10

PowerWorld Simulator 8.0 OPF, ATC. For use only by staff and students of a	Ite licensed Universities Status Running (PF) + [Contingency Ar	alysis] (running		= 0 8
Tre Sendature Cock/Annutian OptimicTask (FOFF Wedge 部部でもないので、「「「」」」、「」」、「」」、「」」、「」」、「」」、「」、「」、「」、「」、	Hep Solpt Mode Log Single Solution 4 > 11]	• E • V ·		(a)e()
Label Skip Process Solved Violation Plax	Bra Min Valt Has Vall Max Bits			
3 pione juventee	Auto Insertion of Contingencies		ĩ	
Volutern Steur valand contingenses Conduct Results a Valace General Devland	Automatially generate participantics involving a Projek analysis of the sensitivity of the sensity of the sensitivity of the sensitivity of the sensitivity of	Colone Solars Colong Configurations SP Code: External Colong Configurations Solars Annual Thermodynamic Colong C	Carityons; Cafriton Actains 1 Bo Contingency Defined	Produt Cont
and lands at	Deart Configurate	X Contel ? Heb		
Load Auto Street Inc. Offer Actors 2			W Rathed	Clase 7 Help
Aun Mode Running				Mewing Current Case

Figura 3.10 Ventana de inserción automática de contingencias

Una vez insertada la contingencia Single transmission line or transformer el programa nos muestra que se insertarán 13 contingencias

Figura 3.11 insercion de 13 contingencias de acuerdo a la contingencia solicitada

Ya insertadas las 13 contingencias se procede ejecutar la simulacion con la opcion Star Run.

Simulation Conclusion 0 Simulation Conclusion Simulation Conclusion Simulation Simulation	ptians/Tooh 1P OP Abort Edit Mode arm + m m Edit Abort 1 Edit Abort 1 Edit Abort 1 Summery Processi Solved Vis NO 90	Window Help Rus Mode: Script Mode 112 - 	Log Single Solut	ion 4 ≻ II 7 ⊠ • "9" •	
10 10 10 10 10 10 10 10 10 10 10 10	Abort Edit Mode Iarra	Rus Mode: Script Mode 199 - 	Log Single Solut	ion = ► II ?• ⊠ • "§" -	
an 20 41 1 1 an an An An 1 1 an an An An An 1 1 an an An An An An 1	01% + 1% 1+ ■ 12, 1+ 1% 1% 5 Surrey Process Solved Vie 10 10 10	92 ·]	- red rede som		
0 0	1075				
Image Am					
Biolis Lines, Buses, Interfaces Option Label Skip I L 00002A2-115-000014 NO L 00002A2-115-000016 NO L 00002A2-115-000016 NO	is Surmery Process Solved Vic ND 190				
Label Skip (5.0002A2-115-000014 HO 1.00002A2-115-000046 HO 1.00002A2-115-000056 HO	Process Solved Vic				
X 00002A2-115-000014 NO 1_00002A2-115-000014 NO 1_00002A2-115-00005C NO	NO NO	And and Many Barn I allow March	and be the second second		
L_00092A2-115-000048 NO L_00002A2-115-00005C NO	10 10	Arbort Place Bra Plan Volt	Plax Volt Plax bib		
L_00002A2-115-00005C NO	100				
P	80 80				
X 0000482-115-000038 W0 1	NO NO				
L 0001702-115-000045 W	NO NO				
X 0000482-115-000108 W	NO NO				
X 00005(2-115-00006(NO	NO NO				
L 00005C2-115-000070-NO	NO NO				
L 00005C2-115-00009E NO	ND 110				
X 00005C2-115-00011C HO	NO MO				
X 00005C2-115-00012C NO	NO NO				
X 00005C2-115-00013C NO	NO NO				
X 0000702-115-000000 NO	ND NO				
21					Configency Definition
					Actions
vielated contingencies Continued 4	Recuits >			the second se	
vreisted contingencies Continued & Category Diament	Remulta >	Value Linu	Percent	Arna Rame Nom kV	1 OPTN Brench A2-115 (2) TO A1-010 (1) CKT 1

Figura 3.12 Ventana Star Run

Una vez corrido el programa figura 3.13 la simulacion nos muestra que la contingencia más sereva es la sobrecarga del transformador CT1 con 105%.

Por lo tanto las acciones sugeridas a realizar sería la liberacion de carga con la apertura de los interruprores de las barras B2-115 y B1-010.

PowerWorld Simulator & D OPF, ATC.	For use on	y by statt a	nd student	s of site licensed Un)	versities Status Initialize	f (running ctg analysis) - (Contin)		= 00 8
E Fle Smulaturi Case Mormation	Cythres	Tool. (P	OPE WY	dun Hep				14 41 8
3 × 3 5 5 > a A 9	Abot	Edd Mos	e Rus M	nde Sont Mode	Log Single Solution	A > 0 4 10 - 10 - 10 - 10 - 10 - 10 - 10 -		
HS AND HAR 1997 AN 737 W1 -	Contraction in the second	A tree II			and I and a second	1 · · · · · · · · · · · · · · · · · · ·		
0 • 77 M AG 11 4 77 1	l'or but a	-1 HO 1						
習品型 みぬ目笛 第・	福田日	11 38	-78					
Contingencies Lines, Buses, Interfaces 0	Cotions Bu	nnery						
label Skie	Proces	os Salural	Visitio	Hay Branch So His	Welt Have Well Place Links			
1 X.00002A2-115-00001A NO	YES	YES	0		and the set of the set			
2 L 00092A2-115-000048 NO	YES	VES	0					
3 L_00002A2-115-00005C NO	YES.	125	0					
4 X 0000482-115-000038 WO	YES	YES	1	105.0				
5 L_0000702-115-000046 WO	YES	YES.	0					
6 X 0000482-115-000108 W)	YES	WES	0					
7 X 00005C2-115-00006C NO	YES.	YES	0					
8 L 00005C2-115-000070 NO	YES	WES	0					
0 L_00005C2-115-00000E-80	YES .	125	D					
10 X_00005C2-115-00011C NO	YES	YES	0					
11 X_00005C2-115-00012C 80	YES	YES	0					
12 X_00005C2-115-00013C NO	YES	YES	0					
13 X_0000702-115-000060 NO	YES	YES	D					
Volatore							Contigency Definition	x
Show related contingencies Comb	med Results	*1					Actions	Plotel Crito
Linkering Ithment		ánd.	h	and a second	Trended Ifer	Warmen Harry Mr.	1 OPEN Branch 82-115 (4) 70 51-010 (3) CKT 1	
Branch Hills C. 510 7 123		1 0.00	1 10 7 10	36.24 25.04	104.05 1.4	155.0		
Status Final-set with 1 Violetimes and D Linus	Availate Cost	Ingesties					r 🔤 😥 Refred Dopers After	, Each Contingency
Second and a second	11122		224					
Load Auto Visert Sa	we	Other Actas	# >				Start Run Oose	7 1940
Kun Mode Paused/Stopped							Views	ng Current Case

Figura 3.13 Simulacion de contingencia

CAPITULO IV CALCULO DE CORTOCIRCUITO

4.1. ASPECTOS GENERALES DEL PROGRAMA DE CORTOCIRCUITO

La corriente que fluye inmediatamente después de que ha ocurrido una falla en una red de potencia se determina mediante las impedancias de los elementos de la red y de las máquinas sincrónicas. La corriente de falla rms simétrica inicial se puede determinar al representar cada máquina por su reactancia subtransitoria en serie con el correspondiente voltaje interno subtransitorio.

En términos más generales, cuando una falla trifásica ocurre sobre una barra k de una red de gran escala, se tiene

$$I''_f = V_f / Z_{kk}$$

Si se desprecian las corrientes de carga prefalla, se puede entonces escribir para el voltaje en cualquier barra j durante la falla

$$V_j = V_f - Z_{jk} I_f = V_f - \frac{Z_{jk}}{Z_{kk}} V_f$$

Donde Z_{jk} y Z_{kk} son elementos en la columna k de la Z barra del sistema,

$$I_{ij}^{"} = \frac{V_i - V_j}{Z_b} = -I_j^{"} \left(\frac{Z_{ik} - Z_{jk}}{Z_b} \right) = -\frac{V_f}{Z_b} \left(\frac{Z_{ik} - Z_{jk}}{Z_{ik}} \right)$$

Esta ecuación muestra I_{ij} como fracción de la corriente de falla I_f que aparece como un flujo de la línea desde la barra i a la j en la red que ha fallado.

Las corrientes subtransitorias son mayores que las transitorias y que las de estado estable. Los interruptores tienen capacidades determinadas por las corrientes instantáneas máximas que el interruptor debe soportar y después interrumpir.

Las corrientes por interrumpir dependen de la velocidad de operación del interruptor. La selección apropiada y la aplicación de los interruptores se hacen (en los Estados Unidos de América) según las recomendaciones de los estándares ANSI, de los cuales se dan algunas referencias. Algunas suposiciones simplificadas se hacen generalmente en los estudios de fallas industriales y son:

• Se pueden despreciar todas las conexiones en paralelo desde las barras del sistema al nodo de referencia (neutro), en los circuitos equivalentes que representan a las líneas de transmisión y a los transformadores.

• Las impedancias de cargas son mucho mayores a la de las componentes de la red y así, pueden despreciarse en la construcción del sistema.

• Todas las barras del sistema tienen un voltaje nominal de 1.0 a un ángulo de

0° pu, de forma que no fluyen corrientes pre falla en la red.

• Las máquinas sincrónicas se pueden representar un voltaje de 1.0 a un ángulo de 0° pu, detrás de una reactancia subtransitoria o transitoria, lo cual depende de la velocidad de los interruptores y de que se esté calculando la corriente momentánea o la de interrupción de falla (se deben consultar los estándares de la ANSI).

• El circuito equivalente de cada máquina sincrónica, formado por una fuente de voltaje y una impedancia serie, se puede transformar en un modelo equivalente de una fuente de corriente y una impedancia paralelo. Entonces, las impedancias paralelos de los modelos de la máquina representan las únicas conexiones, en derivación, al nodo de referencia.

La matriz de impedancia de barra es usada con mayor frecuencia en los cálculos de corriente de falla. Los elementos de Zbarra pueden estar disponibles explícitamente mediante el algoritmo de construcción de Zbarra o bien, se pueden generar a partir de los factores triangulares de Ybarra. Los circuitos equivalentes basados en los elementos de Zbarra pueden simplificar los cálculos de las corrientes de falla, como se demuestra para los casos

Si la fems en una red de secuencia positiva reemplazan por cortocircuitos, la impedancia entre la barra de falla k y el nodo de la referencia es la impedancia de la secuencia positiva $Z_{kk}^{(1)}$ en la ecuación desarrollada para las fallas en los sistemas de potencia y es la impedancia serie del equivalente de Thévenin del circuito que hay entre la barra k y el nodo de referencia. Así, se puede considerar $Z_{kk}^{(1)}$ como una impedancia única o la red de secuencia positiva entre la barra k y la referencia sin que se tenga fems. Si el voltaje *f V* se conecta en serie con esta red de secuencia positiva modificada, el circuito resultante es equivalente de Thévenin de la red de secuencia positiva original.

Se puede ver fácilmente que no fluye la corriente en las barras del circuito equivalente en ausencia de una conexión externa.

Se ha visto en secciones precedentes que los equivalentes de Thévenin de las redes de secuencia de un sistema de potencia se pueden interconectar para encontrar la solución de las redes que dan las componentes simétricas de corriente y de voltaje en la falla. Se muestran las conexiones de las redes de secuencias que simulan los diferentes tipos de falla de cortocircuito, incluso las fallas trifásicas simétricas. Las redes de secuencia se indican esquemáticamente por rectángulos que encierran en una línea que representa la referencia de la red y un punto señalado como barra k para representar la localización de la falla en la red. La red de secuencia positiva contiene fems que representan los voltajes internos de las máquinas.

Estos cambios de voltaje de secuencia positiva se pueden calcular si se multiplican la columna k de la matriz de impedancias de la barra de secuencia positiva $Z_{barra}^{(1)}$ por la corriente $-I^{(1)}_{fa}$ que se inyecta. De manera similar, las componentes de secuencia negativa y cero de los cambios de voltaje debidos a la falla de cortocircuito del sistema, se obtienen de las componentes simétricas $I^{(2)}_{fa}$ e $I^{(0)}_{fa}$ respectivamente, de la corriente falla I_{fa} que sale de la barra k.

Por lo tanto, en un sentido real, solo hay un procedimiento para calcular las componentes simétricas de los cambios de voltaje en las barras del sistema cuando ocurre una falla de cortocircuito en la barra k (esto es, $I^{(0)}_{fa}$, $I^{(1)}_{fa}$ e $I^{(2)}_{fa}$ y se multiplican las columnas k de las matrices de impedancias de barra correspondientes por los valores negativos de estas corrientes). Las únicas diferencias en los cálculos para los tipos más comunes de fallas de cortocircuito son los métodos en que se simulan la falla en la barra k y se formulan de las secuencias $I^{(0)}_{fa}$, $I^{(1)}_{fa}$ e $I^{(2)}_{fa}$). Las conexiones de los equivalentes de Thévenin de las redes de secuencia (que son un medio sencillo de derivar las ecuaciones para $I^{(0)}_{fa}$, $I^{(1)}_{fa}$ e $I^{(2)}_{fa}$

4.2. MODO DE EDICIÓN DEL PROGRAMA INTRODUCCION/MODIFICACION DE PARAMETROS

Para realizar el análisis de fallas utilizando el simulador Power World, el primer paso será introducir las impedancias de secuencia de todos los elementos de los que consta el SEP, esto

es, de los generadores, líneas, transformadores, etc. Todos los datos deben estar en valores de p.u. para una potencia base de 100 MVA.

Para introducir las impedancias de secuencia de los generadores, se selecciona con el botón derecho del ratón al generador en el diagrama unifilar y se elige la opción **Información Dialog**. Se va a la pestaña **Fault Parameters** como se muestra en la figura 4.1 y se introducen los parámetros necesarios para el análisis de falla. Estos son:

- Potencia base del generador (Generator MVA Base), es la potencia a la que están referidas las impedancias de secuencia. Por defecto es la potencia base del sistema 100 MVA.
- Si el neutro del generador esta puesto a tierra a través de una impedancia, en las casillas **Neutral-to-Ground Impedance** se introduce la resistencia y la reactancia de la puesta a tierra.
- Impedancias de secuencia. En las casillas **Positive**, **Negative y Zero Sequence Internal Impedance** se indican las resistencias y reactancias de secuencia del generador. Además, en las casillas **Generator Step Transformer** se indica la impedancia de secuencia homopolar y la posición del tap para el transformador elevador.

Para abrir la opción Fault Parameters de los demás componentes del sistema se procede de la misma manera.

	From Bus	To Bus	- Circuit		Find	By Numbe	
Number	5	13	_ 1	- 💻	Find By Na		
Name	C2-115	C5-010	· · · · ·		1100	n by Ivallie	
Nominal kV	115.0	10.0				-890	
Area Name	1	1	_	From End	Metereo	ł.	
Labels							
arameters]	' Transformer In	fo Series Can	acitor Faul	t Parameters	Misc.	OPE	
					4		
Zero Sequ	ience Impedanc	e	Zero Seq	uence Line Sh	unt Adm	ittance	
R	0.024000		From G	0.000000			
x	0.400000		From B	0.000000		1	
c 🛛	0.00000		To G	0.000000			
			To B	0.000000			
						1	
0	onfiguration	Frounded Wyer	Grounded W	V.P.		T	
	anngar a don p				-	1	

Figura 4.1 Ventana de parámetros de falla del generador

Los parámetros que hay que configurar para los transformadores se refieren a:

- Impedancia de secuencia homopolar. En las casillas **Zero Sequence Impedance** se introducen las componentes de la impedancia de secuencia homopolar del transformador.
- En la casilla **Zero Sequence Line Shunt Admitance** se introducen las componentes de secuencia cero de los elementos de compensación ubicados en los extremos del transformador en el caso de que existan.
- Grupo de conexión (**Configuration**). En el menú desplegable se selecciona el grupo de conexión del transformador, que puede ser:

n	Configuración de los trans	formadores en Power World
1	Wye - Wye	Estrella - Estrella
2	Grounded Wye - Wye	Estrella aterrada - Estrella
3	Wye - Grounded Wye	Estrella - Estrella aterrada
4	Grounded Wye - Grounded Wye	Estrella aterrada - Estrella aterrada
5	Wye - Delta	Estrella - Delta
6	Delta - Wye	Delta - Estrella
7	Grounded Wye - Delta	Estrella aterrada - Delta
8	Delta - Grounded Wye	Delta - Estrella aterrada
9	Delta - Delta	Delta - Delta

Tabla 4.1 Configuración de los transformadores

	From Bus	To Bus	- Circuit		Find	By Num	her	
Number	5	12	_ 1	-	Eind	Du Nas	-	
Name	C2-115	C4-010	1.2		1.0.0		ic.	
Nominal kV	115.0	10.0				ring		
Area Name	1	1	-	From End Metered				
Labels	1							
Parameters	Transformer Info	Series Capac	itor Fault	Parameters	Misc.	OPF	1	
- Toro Soo	uanca Impadanca		Tero Som	uanca Lina Shi	unt Arden	ittanco	_	
P	0.104170		Erom G	0.000000	arre Huan			
	0.833330		From D	0.000000		_		
^	0.000000		FIOID	10.000000	0.000000			
C	0.000000		To G 0.0000	0.000000				
			To B	0.000000				
(Configuration Gr	ounded Wye-Gr	ounded W	/e	×]		

Figura 4.2 Ventana de parametros de falla del transformador

En el caso de las lineas la pestaña de parametrros de falla es similar a la de los transformadores salvo que la opcion **Configuration** se encuentra desactivada.

Number Name	A2-115	- P	1		
Name	A2-115		1		Find By Name
Inminal I/V	pic and	C2-115			Find
Commission KV	115.0	115.0		-	1 1 1 1 1 1
Area Name	1	1		From End Metered	
Labels	1				
rameters)	" Transformer Inf	fn Series Car	acitor Fault	Parameters	
		- 1			1.500
Zero Seq	uence Impedanc	e	Zero Sequ	uence Line Shu	unt Admittance
R	0.119500		From G	0.000000	
x [0.353500		From B	0.000000	
с [0.015100		To G	0.000000	
			To B	0.000000	
C	Configuration				<u>*</u>

Figura 4.3 ventana de parámetros de falla de las líneas de transmisión

4.3. OPCIONES DEL MODO EJECUCION DEL PROGRAMA

El módulo de análisis de fallas está disponible dentro del menú **Options/Tools** cuando el programa está en modo **RUN** eligiendo la opción **Fault análysis**, o haciendo un clic en el botón derecho del ratón en la barra donde se analizara la falla para mostrar el menú local y luego se selecciona la opción "**Fault**" tal como se muestra en la figura 4.4. Este módulo consta de dos pestañas para configurar el tipo de falta (**Fault Data**) y las opciones de análisis (**Fault Options**).

Figura 4.4 Acceso al menú de fallas en el Simulador Power World

La Pestaña Fault Data, consta de las siguientes opciones:

- Localización de la falla (**Fault Location**). Permite seleccionar entre fallas en una barra o fallas en una línea. Dependiendo de la opción seleccionada se muestra en el cuadro de la izquierda la lista de barras o la lista de líneas del caso. Si, se selecciona la opción fallas en líneas se activa la casilla Location para indicar la posición del punto de falla respecto a la barra elegido como origen de la línea.
- Tipo de Falla (Fault Type). Permite seleccionar entre falla monofásica (Fase a Tierra), bifásica (Línea a Línea), bifásica a tierra y trifásica.
- Tipo de Unidades (**Data Type Shown**). Los resultados del análisis se pueden mostrar en valores p.u. o en amperios.
- Corriente de Falla (**Fault Current**). Muestra el valor de la corriente en el punto de falta en modulo y argumento.
- Representación Unifilar (**Online Dispaly**). Permite seleccionar entre la representación unifilar de los resultados de flujo de carga (Normal) o de la distribución de corrientes de falta para cada una de las tres fases o para todas a la vez.
- Resultados Tabulados. La tabla de la parte inferior de la pantalla muestra las corrientes de falta en todos los elementos del sistema para la falta analizada. Para moverse entre los diferentes tipos de elementos hay que pinchar sobre la pestaña correspondiente.
- Por último, en la parte inferior de la ventana se muestran los botones para ejecutar el análisis (Calculate) y para borrar los resultados (Clear).

SIMULATION OF POWER SYSTEMS

Choo: C Soi	e the Faulted Line t by Name	 Sort by Number 	Fault Loca	ult	Fault	Type ingle Line-to-Grour ine-to-Line	id Curi	Type rent l p.u.	e Shown Units C Amps		Fault Current	-
Searc	ch For Near Bus 1-010) [10 K' 🔺	Select Far Bus, CK	Far Bus, CKT 10) [10 KV] C 15) [115 KV] I		C 3 Phase Balanced C Double Line-to-Ground		nd One	eline Nom	Display	Δ C Phase C	Angle:	p.u
3 (B 4 (B 5 (C	1-010) [10 K 2-115) [115] 2-115) [115]	5 (C2-115) [115 K	V] I Location %	31 🗲	×F \v I⊽ Ir	/ye-Delta Phase SI nclude in Calculatio	n C	All P	hases C Phase	B		deg
buses	Lines Gener	Name	Phase Volt A	Phase Vo	lt B	Phase Volt C	Phase And	A	Phase Ang B	Phase Ang C		
U	1	A1-010										
2	2	A2-115										
3	3	B1-010										
4	4	B2-115										
5	5	C2-115										
6	6	C1-010										
70	7	D2-115										
B	8	D1-025										
9	9	E1-115										
10	10	B3-010		-								
11	11	C3-010										
13	12	C4-010										

Figura 4.5 Ventana "Fault Data" del simulador Power World

La segunda pestaña, Fault Options, que, consta de las siguientes opciones:

- Impedancia de falla (Fault Impedance). Permite introducir el valor de la impedancia de falla. Se debe introducir en valor p.u. y referida a la potencia base del sistema.
- Impedancia de secuencia homopolar de líneas mutuamente acopladas (Zero Sequence Mutual Impedances). Esta opción permite modelizar la impedancia homopolar de acoplamiento de las líneas que circulan en paralelo.

Sequence Mutual	mpedances	L1 Ckt II	12 From Bus	12 To Bus	12 Ckt II	Mutual R	Mutual X	L1 Mut. Start	11 Mut. Fnd	12 Mut. Sta
None	Defined				Cite a				and the time	

4.3.1. CALCULO DE CORRIENTES DE CORTO CIRCUITO TRIFASICO

Opere en el programa Power World para determinar:

- a.- La corriente de falla trifasica en la barra B2-115, de la figura 4.4
- b.- Determine la corriente de falla trifasica en bornes de generacion C3-010
- c.- Determine la corriente de falla en la linea de la barra A2-115 a la barra B2-115 al 50%

SOLUCION:

Obtenemos el flujo de potencia de la figura 4.4, luego se procede a operar insertando la falla trifasica en la barra B2-115. Se permanece en modo *Run* para el análisis de fallas simétricas, se ayuda del ratón pinchando con el botón derecho sobre el elemento donde se desea analizar la falla y se selecciona la opción *Fault*, luego se selecciona la opción Fault Options para considerar corrientes de pre falla y otros de ser necesario, Se cambia a la pestaña *Fault Data* se selecciona el tipo de falla (3 Phase Balanced) simétrica y presionamos el botón *Calculate* para obtener la respectiva corriente de falla con su ángulo figura 4.7

Choos Sor	e the Faulted Bu t by Name	 Sort by Numb 	Fault Locat	ion Faul ult	lt Type Single Line-to-Grou Line-to-Line	nd Current	e Shown Units (Amps		Fault Current Magnitude:	
1 (A 2 (A) 3 (B 4 (B)	1-010) [10 KV] 2-115) [115 KV] 1-010) [10 KV] 2-115) [115 KV]		C In-Line	C In-Line Fault		und Coneline	Display nal C Phase	A 🤈 Phase C	1302.130 Angle:	Amps
5 (C) 6 (C) luses	2-115) [115 KV] 1-010) [10 KV] Lines Gene	ators Loads 9	Location %		Include in Calculatio	on Lat All P	hases (Phase	B		uog
	Number	Name	Phase Volt A	Phase Volt B	Phase Volt C	Phase Ang A	Phase Ang B	Phase Ang C		_
L	1	A1-010	0.34366	0.34366	0.34366	29.70	-90.30	149.70		- 1
2	2	A2-115	0.02754	0.02754	0.02754	15.26	-104.74	135.26		1
	3	B1-010	0.32705	0.32705	0.32705	32.02	-87.98	152.02		
	4	B2-115	0.00000	0.00000	0.00000	0.00	0.00	0.00		
	5	C2-115	0.10972	0.10972	0.10972	16.57	-103.43	136.57		
	6	C1-010	0.10972	0.10972	0.10972	16.57	-103.43	136.57		
	7	D2-115	0.09692	0.09692	0.09692	16.46	-103.54	136.46		
	8	D1-025	0.09799	0.09799	0.09799	14.35	-105.65	134.35		
)	9	E1-115	0.10969	0.10969	0.10969	16.54	-103.46	136.54		
0	10	B3-010	0.00000	0.00000	0.00000	0.00	0.00	0.00		
1.1	11	C3-010	0.52974	0.52974	0.52974	27.63	-92.37	147.63		
1										

Figura 4.7 Calculo de la corriente de corto circuito trifasico en la barra B2-115

SIMULATION OF POWER SYSTEMS

So	se the Faulted Bu it by Name	is	Fault Local	tion Fau ult	lt Type Single Line-to-Grou	nd Current	e Shown Units © Amps		Fault Current Magnitude:	
6 (C 7 (D	1-010) [10 KV] 2-115) [115 KV]	* C In-Line	Fault	C Ine-to-Line 3 Phase Balanced Double Line-to-Ground		Display		10240.200	Amp:
9 (E 10 (E 11 (C uses	1-023) [25 KV] 1-115) [115 KV 3-010) [10 KV] 3-010) [10 KV]] rators Loads '	Location %	0 🔹 🔽	√ye-Delta Phase S Include in Calculati	hift on	Phases C Phase	B	-58.46	deg.
	Number	Name	Phase Volt A	Phase Volt B	Phase Volt C	Phase Ang A	Phase Ang B	Phase Ang C		
	1	A1-010	0.77699	0.77699	0.77699	26.38	-93.62	146.38		1
	2	A2-115	0.66841	0.66841	0.66841	22.96	-97.04	142.96		
	3	B1-010	0.77757	0.77757	0.77757	27.00	-93.00	147.00		
	4	B2-115	0.66818	0.66818	0.66818	22.91	-97.09	142.91		
	5	C2-115	0.62564	0.62564	0.62564	23.11	-96.89	143.11		
	6	C1-010	0.62564	0.62564	0.62564	23.11	-96.89	143.11		
	7	D2-115	0.62966	0.62966	0.62966	22.97	-97.03	142.97		
	8	D1-025	0.63657	0.63657	0.63657	20.86	-99.14	140.86		
	9	E1-115	0.62544	0.62544	0.62544	23.08	-96.92	143.08		
	10	B3-010	0.66479	0.66479	0.66479	20.22	-99.78	140.22		
0	10	C3-010	0.00000	0.00000	0.00000	0.00	0.00	0.00		
0	11	CS OIO								

Figura 4.8 Calculo de la corriente de corto circuito trifasico en la barra C3-010

Choo: Soi	se the Faulted Line It by Name	e Sort by Number	Fault Loca	tion F ult (ault Type C Single Line-to-Grou C Line-to-Line	nd Current	e Shown Units (• Amps		Fault Current	
Searc	ch For Near Bus 1-010)[10 K* 🔺	Select Far Bus, CKT 1 (A1-010) [10 KV]	C In-Line	Fault (3 Phase Balanced Double Line-to-Gro 	und Oneline	Display	Δ C Phase C	Angle:	Amps
3 (B 4 (B 5 (C	2-115) [10K 1-010) [10K 2-115) [1151 2-115) [1151 -	5[C2-115][115KV	Location %	[50 € [KF Wye-Delta Phase S ✔ Include in Calculati	Shift C All F	Phases C Phase	B	-55.97	deg.
suses	Lines Gener	ators Loads Switch	hase Volt A	Phase Volt	B Phase Volt C	Phase Ang A	Phase Ang B	Phase Ang C		
1	1	A1-010	0.33526	0.33526	0.33526	30.06	-89.94	150.06		Ē
2	2	A2-115	0.01475	0.01475	0.01475	15.16	-104.84	135.16		
3	3	B1-010	.33599	0.33599	0.33599	31.58	-88.42	151.58		
4	4	B2-115	0.01370	0.01370	0.01370	15.73	-104.27	135.73		
5	5	C2-115	.10907	0.10907	0.10907	16.59	-103.41	136.59		
6	6	C1-010	0.10907	0.10907	0.10907	16.59	-103.41	136.59		
7	7	D2-115	0.09792	0.09792	0.09792	16.47	-103.53	136.47		
8	8	D1-025	0.09900	0.09900	0.09900	14.35	-105.65	134.35		
9	9	E1-115	0.10903	0.10903	0.10903	16.56	-103.44	136.56		
10	10	B3-010	0.01363	0.01363	0.01363	13.04	-106.96	133.04		
11	11	C3-010	.52939	0.52939	0.52939	27.64	-92.36	147.64		
		C1 010	10007	0 10007	0 10007	16 50	102.41	126 50		

Figura 4.9 Calculo de la corriente de corto circuito trifasico en la linea de la barra A2-115 a la barra B2-115 al 50%

4.3.2. CALCULO DE CORRIENRES DE CORTOCIRCUITO MONOFASICO A TIERRA

Opere en el programa Power World para determinar:

a.- la corriente subtransiroria a tierra en la falla para la barra B2-115, de la figura 4.4

b.- la corriente subtransitoria a tierra en bornes de generacion C3-010

c.- la corriente subtransitoria a tierra de falla en la linea para la barra A2-115 a la barra B2-115 al 50%

SOLUCION

De la misma forma que el calculo trifasico se procede a operar insertando la falla a tierra en la barra B2-115. Se permanece en modo *Run* para el análisis de fallas asimétricas, se ayuda del ratón pinchando con el botón derecho sobre el elemento donde se desea analizar la falla y se selecciona la opción *Fault*, luego se selecciona la opción Fault Options para considerar corrientes de pre falla y otros de ser necesario. Se cambia a la pestaña *Fault Data* se selecciona el tipo de falla asimétrica si es línea a tierra, línea a línea o doble línea a tierra y presionamos el botón *Calculate* para obtener la respectiva corriente de falla con su ángulo

hoos Soi	e the Faulted Bu t by Name	s © Sort by Numb	Fault Locat	tion Faul	t Type Single Line-to-Grou .ine-to-Line	nd Data Typ Current C p.u.	e Shown Units (• Amps		Fault Current	
1 (A 2 (A 3 (B	1-010) [10 KV] 2-115) [115 KV] 1-010) [10 KV]		C In-Line	ne Fault C 3 Phase Balanced C Double Line-to-Ground		und Oneline	Display		1227.480	Amp
4 (B 5 (C 6 (C uses	2-115) (115 KV) 2-115) (115 KV) 2-115) (115 KV) 1-010) (10 KV)	rators Loads S	Location %	0 <u></u>	√ye-Delta Phase S nclude in Calculati	hift C All F	'hases C Phase	B	-58.71	deg
	Number	Name	Phase Volt A	Phase Volt B	Phase Volt C	Phase Ang A	Phase Ang B	Phase Ang C		
2	1	A1-010	0.35102	1.04291	0.98997	29.26	-94.50	148.66		1
8	2	A2-115	0.03905	1.06144	0.98102	13.42	-97.22	147.30		
8	3	B1-010	0.32705	1.04579	0.99649	32.02	-94.51	149.50		
8	4	B2-115	0.00000	1.06543	0.98881	0.00	-97.92	147.81		
	5	C2-115	0.15090	1.04273	0.95077	13.71	-95.75	145.51		
4	6	C1-010	0.15090	1.04273	0.95077	13.71	-95.75	145.51		
	7	D2-115	0.13277	1.04463	0.95359	13.30	-96.13	145.72		
ŝ.	8	D1-025	0.13432	1.06768	0.95543	6.00	-98.05	144.12		
74	9	E1-115	0.15081	1.04257	0.95035	13.61	-95.78	145.49		
0	10	B3-010	0.02104	1.08101	0.97382	-96.00	-100.53	146.20		
1	11	C3-010	0.55134	1.03841	0.98838	26.89	-91.99	148.69		
	4.75	64 010	0 10000	1 04373	0.00077	12 71	OF 7E	146 61		

Figura 4.10 Calculo de la corriente de corto circuito a tierra en la barra B2-115

SIMULATION OF POWER SYSTEMS

CI.			- Fault Loop	tion Eaul	t Tuno	Data Tua	o Choum			
⊂hoo: `So	se the Faulted Bu rt by Name	s 🕞 Sort by Numb	Der	ult C I	Crype Single Line-to-Grou Line-to-Line	nd C p.u.	Units (• Amps		Magnitude:	- 4
6 (C 7 (D	1-010) [10 KV] 2-115) [115 KV		^ C In-Line	Fault C	ault C 3 Phase Balanced C Double Line-to-Groun		Display	A C Physic	Angle:	Amt
9 (E 10 (E 11 (0 Buses	1-025) [25 KV] 1-115) [115 KV] 33-010) [10 KV] 23-010) [10 KV]	rstora Looda (Location %	0 ★ ×FV	√ye-Delta Phase S Include in Calculati	hift on	'hases (° Phase	B	-59.07	deg
	Number	Name	Phase Volt A	Phase Volt B	Phase Volt C	Phase Ang A	Phase Ang B	Phase Ang C		-
1	1	A1-010	0.77674	1.01362	0.98929	25.52	-93.58	146.71		1
2	2	A2-115	0.66903	1.01735	0.98121	21.48	-95.97	144.40		
3	3	B1-010	0.77722	1.01372	0.98927	26.13	-93.11	147.19		
ŧ.	4	B2-115	0.66886	1.01641	0.98003	21.41	-96.01	144.35		
5	5	C2-115	0.60937	1.01843	0.98419	21.59	-97.13	144.94		
	6	C1-010	0.60937	1.01843	0.98419	21.59	-97.13	144.94		
6	7	D2-115	0.61508	1.01713	0.98224	21.43	-97.12	144.78		
5	8	D1-025	0.62085	1.03362	0.98895	18.81	-99.14	142.89		
5 6 7 8		E1-115	0.60913	1.01819	0.98381	21.55	-97.16	144.91		
5 7 8 9	9	B3-010	0.66351	1.01761	0.97103	18.19	-98.64	141.95		
6 7 8 9 10	9 10		0.00000	1.02498	1.00657	0.00	-92.73	148.39		
5 6 7 8 9 10 11	9 10 11	C3-010	0.00000							

Figura 4.11 Calculo de la corriente de corto circuito a tierra en la barra C3-010

hoos Sor	e the Faulted Line by Name	e Sort by Numb	Der C Bus F	ation Fa	ult Type Single Line-to-Grour Line-to-Line	nd Data Typ Current C p.u.	e Shown Units (Amps		Fault Current Magnitude:
iearc 1 (A1	h For Near Bus -010)[10 K' 🔺	Select Far Bus 1 (A1-010) [10	, CKT (KV] C In-Lin	ne Fault C	C 3 Phase Balanced C Double Line-to-Ground		Display nal C Phase		Angle:
3 (B1 4 (B2 5 (C2 uses	-010) [10 K 2-115) [115] 2-115) [115] Lines Gener	5 (C2-115) [11	US KV] I Location	% 50 € ×F	Wye-Delta Phase Si Include in Calculatio	hift on CAILP	hases (* Phase	B	-58.72 deg
_	Number	Name	Phase Volt A	Phase Volt E	Phase Volt C	Phase Ang A	Phase Ang B	Phase Ang C	
	1	A1-010	0.33923	1.04399	0.99284	29.80	-94.71	148.81	
	2	A2-115	0.02100	1.06326	0.98520	13.20	-97.52	147.53	
	3	B1-010	0.33937	1.04428	0.99340	31.28	-94.28	149.32	
	4	B2-115	0.01924	1.06290	0.98437	12.12	-97.60	147.53	
	5	C2-115	0.14998	1.04260	0.95096	13.61	-95.75	145.51	
	6	C1-010	0.14998	1.04260	0.95096	13.61	-95.75	145.51	
	7	D2-115	0.13418	1.04424	0.95326	13.18	-96.10	145.68	
	8	D1-025	0.13578	1.06725	0.95510	5.95	-98.02	144.08	
	9	E1-115	0.14989	1.04244	0.95054	13.51	-95.78	145.48	
0	10	B3-010	0.02413	1.07790	0.96945	-45.53	-100.20	145.89	
1	11	C3-010	0.55083	1.03834	0.98848	26.89	-91.99	148.69	
-	12	C4-010	0.14998	1.04260	0.95096	13.61	-95.75	145.51	

Figura 4.12 Calculo de la corriente de corto circuito a tierra en la linea de la barra A2-115 a la barra B2-115 al 50%

4.4. APLICACIÓN A COORDINACIÓN DE PROTECCIONES

El diseño de los sistemas eléctricos, requiere de minuciosos estudios para evaluar su comportamiento, confiabilidad y seguridad. Estudios típicos que se realizan son la coordinación de protecciones, cálculo de corto circuito, etc. Un buen diseño debe estar basado en un cuidadoso estudio que se incluye la selección de voltaje, tamaño del equipamiento y selección apropiada de las protecciones.

La mayoría de los estudios necesitan de un complejo y detallado modelo que represente al sistema eléctrico, generalmente establecido en la etapa de proyecto. Los estudios de corto circuito son típicos ejemplos de éstos, siendo esencial para la selección de equipos y el ajuste de sus respectivas protecciones.

Por lo tanto para la aplicación a coordinación de protecciones un estudio de corto circuito sirve para realizar la coordinación de los dispositivos de protección contra las corrientes de cortocircuito.

En la figura 4.13 para la definición de los ajustes y la coordinación de las protecciones de las líneas de transmisión se debe considerar los siguientes aspectos:

- 1. Su posición en el sistema que puede ser radial o de interconexión.
- 2. La configuración que puede ser de simple terna o de doble terna.
- 3. El nivel de tensión de línea que puede ser 115 kV, 132 kV, 220 kV.
- 4. La longitud eléctrica que depende del Sistema, el cual indica si es corta, mediana o larga.

La metodología que se debe emplear para el ajuste y la coordinación de la protección es asignar unos ajustes a los relés y luego simular fallas dentro y fuera de la zona protegida para determinar si las impedancias vistas por los relés tienen la selectividad apropiada. En todos los casos se debe definir los escenarios que corresponden a las mínimas y máximas corrientes de fallas, las cuales corresponden a los siguientes casos:

Máxima corriente de falla Con máxima demanda, lo que ocasione el mayor nivel de cortocircuito en las barras de alta tensión a la cual se conecta la línea. Para las funciones de protección de fases debe calcularse las fallas trifásicas y para las funciones de protecciones de tierra las fallas monofásicas con resistencia de falla igual a cero.

Mínima corriente de falla Con mínima demanda, lo que ocasione el menor nivel de cortocircuito en barras de alta tensión de la subestación a la cual se conecta la línea. Para las funciones de protección de fases debe

calcularse las fallas bifásicas y para las funciones de protecciones de tierra las fallas monofásicas con resistencia de falla diferente de cero.

Figura 4.13 Sistema de Potencia para la aplicación de Protecciones

Para determinar los ajustes de las protecciones de una línea, Se debe definir el ajuste de las siguientes protecciones graduadas.

Relé de Protección	Mirando fallas en la línea	Mirando en los circuitos siguientes
21/21N Protección de distancia	En la línea En el transformador	En las líneas siguientes En el transformador
67N Protección de sobrecorriente direccional homopolar	En la línea En el transformador	En las líneas siguientes En el transformador

Tabla 4.2 Protecciones graduadas de las lineas

Para el ajuste se debe atender los requerimientos indicados en la tabla 4.3. Se considera las siguientes definiciones:

Impedancia de la línea = (RL, XL) Impedancia del transformador siguiente = (RT, XT)

Resistencia de falla a tierra = RF1

Resistencia de falla entre fases = RF2

From Bus T			ToE	Bus C	Find By Number		
Number	A2-115 115.0		100.445	[1			Find By Name
Name			82-115				Find
Nominal kV			115.0		2.00		and and a second se
Area Name 1			1		v		Metered
Labels							
arameters] T	ransfor	mer Info	Series	Capacitor	Fault Pa	rameters	
) Parameters	Turistoi	mer into	1 ocnes .	subactor 1	i dater a	a came der b	
Paratelers			10	Limit A	(MVA)	78.00	Status
Reactance (X) Charging (B or C)		0.0208	30	Limit B	(MVA)	0.00	C Open
		0.0022		Limit C	(MVA)	0.00	Closed
Has Line Shunts							
lows							
Line flow at	Bus	A2-115		Lir	ne flow a	at Bus	B2-115
5.3 M	W to B2	-115			5.3	MW from A	A2-115
3.0 Mvar to B2-115 6.1 MVA 7.8 % Loading				3.2 Mvar from A2-115 6.2 MVA 8.0 % Loading			

Figura 4.14 Parametros de la linea A2-115 B2-115 para el ajuste del rele 21

Relé de Protección	Por la instalación	Por el sistema
21/21N Protección de distancia	Zona 1 $X1 = 85\% X_L$ $R1 = R_F$ $K0 = según X_L$ Zona 2 $X2 = X_L + 50\% X_T$ $K0 = según X_L \& X_T$ Zona 3 $X3 = X_L + 80\% X_T$ $K0 = según X_L \& X_T$	Las impedancias ajustadas deben ser menores que las impedancias vistas en las fases sanas después de un cortocircuito monofásico Los ajustes de las Resistencias deben ser menores que el 50% de la Impedancia de Carga
67N Protección de sobrecorriente direccional homopolar	20% de la corriente de la nominal de la línea	Se debe detectar una falla a tierra con 100 Ohm en el extremo de la línea protegida en mínima generación

Tabla 4.3 Ajustes de las protecciones graduadas de las lineas

Se debe verificar el ajuste considerando lo siguiente:

- 1. Una falla trifásica en el extremo remoto de la línea (far-end) no debe ser vista en la primera zona del Relé de Distancia
- Una falla bifásica en el extremo remoto de la línea (far-end) no debe ser vista en la primera zona del Relé de Distancia
- Una falla monofásica con diferentes resistencias de falla en el extremo remoto de la línea (far-end) no debe ser vista en la primera zona del Relé de Distancia
- Una falla trifásica como el de la figura 4.15 al 50% de la línea, bifásica o monofásica (dependiendo del tipo de falla), debe ser vista en la primera zona del Relé de Distancia de forma instantánea.

Figura 4.15 Calculo de corto circuito trifasico en la linea de la Barra A2-115 a barra B2-115 al 50% de la linea

Choose the Faulted Line							Fault Location Fault Type		D	ata Type Sh	Fault Current		
Sort by Name © Sort by Number					Bus Fault C Bus Fault C In-to-Line C In-Line Fault C In-Line Fault C Double Line-to-Ground			Current Unit C p.u.	Magnitude: 1301.510 Amp				
Search For Near Bus Select Far Bus, CKT													
1 (A1-010) [10 KV]				d			Oneline Disp						
2 (A2-115) (115 KV) 4 (B2-115) (115 KV) CKT 1			C Normal @ Phase A C Phase C						Angle:				
3 (B1	3 (B1-UTU J (TUKV) 5 (C2-115) (115 KV) CKT 1 4 (B2-115) (115 KV)		Location % 50 1 Include in Calculation			C All Phases C Phase B			-55.97 deg				
5 (C2	115 1 115	5 KV]	-									3	
uses	Lines 0	enerators Lo	ads Switch	hed Shunts									
	From Nu	m From Nam	To Numbe	ToName	Circuit	Xfeme	Phase Cur & F	rom Phase Cur B From	Phase	Cur C Fron	Phase Cur A T	o Phase Cur B	To Phase Cur C To
ē.	2	A2-115	1	A1-010	1	Yes	357.62	357.62	357.6	52	4215.46	4215.46	4215.46
i.	2	A2-115	4	B2-115	1	No	0.00	0.00	0.00)	0.00	0.00	0.00
1	2	A2-115	5	C2-115	1	No	317.33	317.33	317.3	33	316.88	316.88	316.88
1	2	A2-115	14	FaultPt	1	No	674.67	674.67	674.6	57	674.68	674.68	674.68
50	4	B2-115	3	B1-010	1	Yes	359.60	359.60	359.6	50	4238.77	4238.77	4238.77
5	7	D2-115	4	B2-115	1	No	267.59	267.59	267.5	59	268.02	268.02	268.02
1	4	B2-115	10	B3-010	1	Yes	0.99	0.99	0.99)	11.12	11.12	11.12
3	14	FaultPt	4	B2-115	1	No	626.84	626.84	626.8	34	626.83	626.83	626.83
	5	C2-115	6	C1-010	1	Yes	0.00	0.00	0.00		0.00	0.00	0.00
10	5	C2-115	7	D2-115	1	No	271.77	271.77	271.7	77	271.87	271.87	271.87
11	5	C2-115	9	E1-115	1	No	11.24	11.24	11.2	4	11.25	11.25	11.25
12	5	C2-115	11	C3-010	1	Yes	252.79	252.79	252.7	79	2907.04	2907.04	2907.04
13	5	C2-115	12	C4-010	1	Yes	0.00	0.00	0.00	0	0.00	0.00	0.00
14	5	C2-115	13	C5-010	1	Yes	343.30	343.30	343.3	30	3947.99	3947.99	3947.99
15	7	D2-115	8	D1-025	1	Yes	6.70	6.70	6.70)	30.03	30.03	30.03

Figura 4.16 Reporte de valores de corriente en el sistema de potencia

Se debe definir los tiempos de operación de la siguiente manera:

Relé de Protección	En la línea	En el circuito siguiente
21/21N Protección de distancia	Zona 1 = Instantáneo Zona 2 = 250 ms – 500 ms	Zona $2 = 250 \text{ ms} - 500 \text{ ms}$ Zona $3 = 500 \text{ ms} - 750 \text{ ms}$
67N Protección de sobrecorriente direccional homopolar	Ídem a Zona 2	Ídem a Zona 2

Tabla 4.4 Coordinacion de las protecciones Graduadas de las lineas de Transmision

4.5. APLICACIÓN A OPERACIÓN Y PLANIFICACION

Un aspecto importante a considerar en la operación y planificación de los sistemas eléctricos es su comportamiento en condiciones normales, sin embargo también es relevante observarlo en el estado transitorio; es decir, ante una contingencia.

Esta condición transitoria en las instalaciones se debe a distintas causas y una gran variedad de ellas está fuera del control humano.

Ante ello los equipos y/o sistemas pueden sufrir daños severos temporales o permanentes en condiciones de falla. Por lo tanto, es necesario definir equipos y esquemas de protección adecuados al momento de diseñar las instalaciones, de tal forma que se asegure el correcto desempeño de la red eléctrica, apoyada por los dispositivos de monitoreo, detección y señalización.

Debido a lo indicado, se hace indispensable realizar estudios de corto circuito para determinar los niveles de corriente ante fallas, las cuales permiten obtener información necesaria para seleccionar correctamente la capacidad de los equipos en función de los requerimientos mínimos que deben cumplir y así soportar los efectos de las contingencias. Sin embargo, la presencia de fallas es una situación indeseable en un sistema eléctrico, pero lamentablemente no se pueden prever pues se presentan eventualmente teniendo diversos orígenes, por lo que ante estas condiciones, se debe estar en posibilidad de conocer las magnitudes de las corrientes de corto circuito en todos los puntos de la red.

En general, se puede mencionar que un estudio de corto circuito sirve para:

- Determinar las capacidades interruptivas de los elementos de protección como son interruptores, fusibles, entre otros.
- Permite realizar estudios térmicos y dinámicos que consideren los efectos de las corrientes de corto circuito en algunos elementos de las instalaciones como son: sistemas de barras, tableros, cables, etc.
- Obtener los equivalentes de Thevenin y su utilización con otros estudios del sistema, como son los de estabilidad angular en los sistemas de potencia y ubicación de compensación reactiva en derivación, entre otros.
- > Calcular las mallas de puesta a tierra, seleccionar conductores alimentadores.

Debemos entender que la duración del corto circuito es el tiempo en segundos o ciclos durante el cual, la corriente de falla se presenta en el sistema. El fuerte incremento de calor generado por tal magnitud de corriente, puede destruir o envejecer los aislantes del sistema eléctrico, por lo tanto, es de vital importancia reducir este tiempo al mínimo mediante el uso de las protecciones adecuadas.

4. CONCLUSIONES

De todo lo expuesto en los capítulos anteriores, queda patente el gran potencial que ofrece la Simulación de Sistemas de Potencia (SIMULATION OF POWER SYSTEMS), especialmente en los siguientes campos:

- Profundización de conceptos teóricos en los estudios de Sistemas Eléctricos de Potencia, en virtud a la gran flexibilidad en la configuración y monitoreo ofrecida por la plataforma de los programas
- Desarrollo de competencias relacionadas con la operación adecuada de equipos, por medio de las interfaces de entrada/salida digital y analógica disponibles entre el simulador y el entorno.
- Posibilidad de realizar estudios de alta complejidad tecnológica, tales como ensayos de flujos de potencia, flujos de potencia óptima, cálculo de corto circuito que hoy en día se lo hacen por estos medios programáticos.
- Por todo esto, vemos que la inclusión de un Simulador de Sistemas de Potencia en las instalaciones del mercado eléctrico ha constituido en un paso fundamental en la consolidación del Parque Eléctrico como núcleo tecnológico de avanzada.

5. **REFERENCIAS**

- [1] Glover Duncan & Sarma M.; Análisis y Diseño de Sistemas de Potencia
- [2] Stevenson & Grainger; Elementos de Análisis de Sistemas de Potencia
- [3] Condiciones Mínimas de Desempeño del SIN (Sistema Interconectado Nacional)
- [4] Software Power World para simulación de Sistemas de Potencia