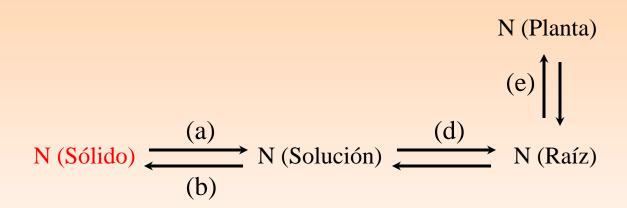


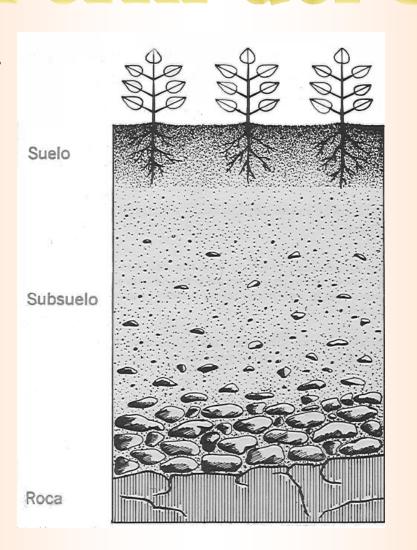
Manejo del Plan de Fertilización en Relación con la Calidad del Ferraje en Producción Lechera Intensiva


Bernardo Villa Machado Medico Veterinario Lorena Herrera Cuartas Zootecnista

____Agosto de 2013

La frase de nuestros abuelos, "El Suelo Hace al Animal", puede traducirse hoy por una expresión mas moderna "El organismo (animal o humano) es la fotografía bioquímica del medio en que vive; mas particularmente del suelo que ha producido los alimentos de este organismo"

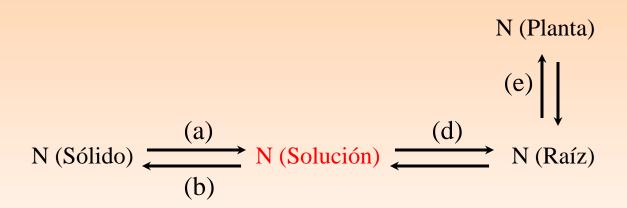
Andre Voisin


Ecuación de Fried y Broeshart

N= Representa un nutriente cualquiera

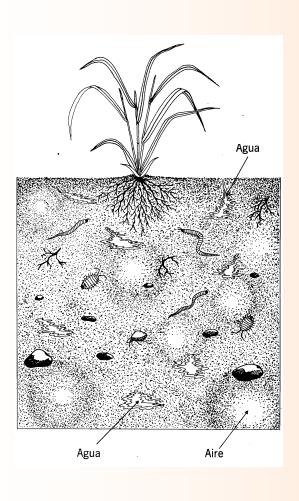
El Perfil del Suelo

Esta compuesto por las distintas capas que han dado origen al suelo.



Perfil Maduro y Antiguo

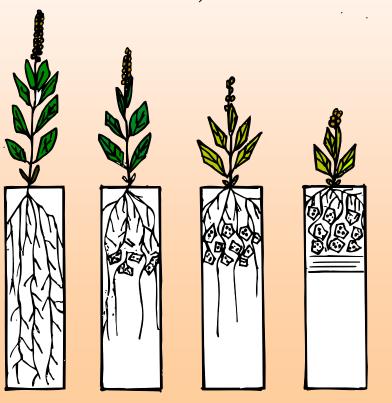
Contribución de Algunos Minerales a la Formación y Características de los Suelos


Grupo	Especimenes	Elementos, sustancias o
Mineralógico	Principales	características que aportan
Grupo de los	Ortoclasa - Microlina	Potasio, Sodio y Calcio.
Feldespatos	Albita	Formación de Arcillas.
Grupo de los	Homblenda - Tremolina	Calcio, Sodio, Potasio
Anfiboles	Actinolita	y algo de Hierro
Grupo de los	Hiperstena - Augita	Magnesio, Calcio
Piroxenos	Diópsido	y algo de Hierro
Grupo de las	Biotita	Potasio, Magnesio y Hierro.
Micas	Muscovita	Formación de Arcillas.
Minerales Silicos	Cuarzo - Cristobalita	
(Óxidos)	Calcedonia	
Óxidos de Hierro	Hematita - Limonita	Hierro
	Magnetita - Goetita	
Carbonatos	Calcita	Calcio y Magnesio.
	Dolomita	
Otros Minerales	Apatito - Turmalina	Fósforos, Boro, Hierro,
	Piritas - Yeso	Azufre y Calcio

Ecuación de Fried y Broeshart

N= Representa un nutriente cualquiera

Componentes del Suelo



- Aire
- Agua
- Minerales
- Animales
- Plantas
- Microbios
- Materia Orgánica

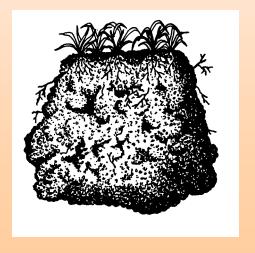
Propiedades Físicas

La Profundidad Efectiva: Puede verse afectada por distintos factores como suelos duros, encostrados,

excesos de agua o nivel freático muy superficial; también elementos tóxicos, todos ellos limitan el crecimiento de las raíces

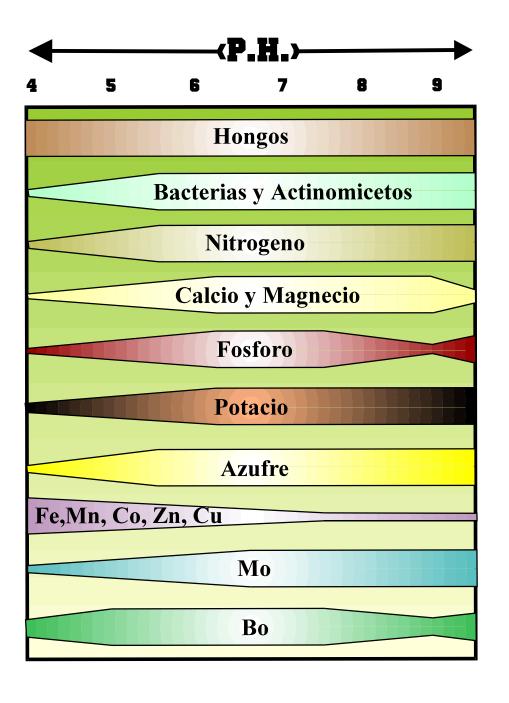
Propiedades Físicas

Distintos Tipos de "Estructura"



Propiedades Físicas

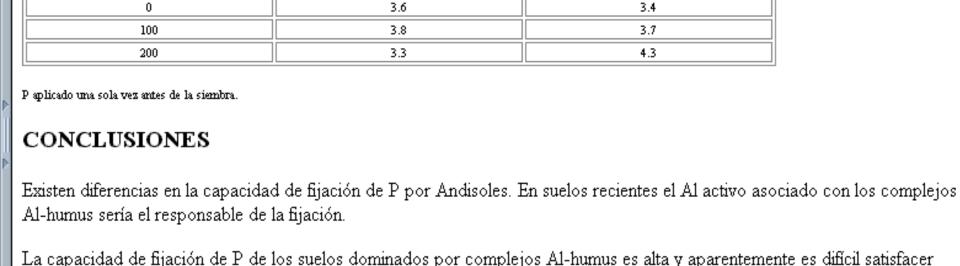
Estructura: Los distintos componentes "Texturales" del suelo se agrupan para formar terrones.



Suelo Bien "Estructurado"

El P.H. del Suelo

Disponibilidad de los Elementos para las Plantas.


Análisis de un Suelo Joven

Finca: VILLA MANUELA Municipio: San Pedro

Fecha: 03/04/2013 Cultivo: Fríjol

Propietario: Almacén El Establo Informe No.: 52323

Muestra	Resultado	Unidades	Interpretación	Muestra	Resultado	Unidades	nterpretación
Arena	70,00	%		Na		p.p.m.	
Limo	20,00	%		K	0,31	p.p.m.	Normal
Arcilla	10,00	%		Al	4,40	p.p.m.	Alto
Textura	Franco Arenoso			Р	2,00	p.p.m.	Bajo
M.O. %	28,90	%	Alto	S		p.p.m.	
рН	5,00		Bajo	Zn	2,00	p.p.m.	Bajo
C.I.C. Ef	5,10	Meq / 100 gr	Bajo	Cu	1,00	p.p.m.	Bajo
CO ₃		Meq / 100 gr		Fe	190,00	p.p.m.	Normal
N		Meq / 100 gr		Mn	3,00	p.p.m.	Bajo
Ca	0,20	Meq / 100 gr	Bajo	В	ND	p.p.m.	Bajo
Mg	0,20	Meq / 100 gr	Bajo				

El análisis de suelo no predice adecuadamente el estado del P para ciertos cultivos y se hace necesario determinar parámetros

http://www.redpay-fpolar.info.ve/fagro/v17_14/v171a050.html

t ha⁻¹

🐔 Inicio া Netscapeles 🔍 Buscar 🙆 Shop 🗎 Marcadores 🔊 Net2Phone 🛇 StarMedia 🛇 Internet 🛅 Buscar

Primer Corte

Cuadro 4. Efecto de la aplicación de niveles de P en el rendimiento de materia seca de una mezcla forrajera. Suelo

N Untitled - Netscape 6

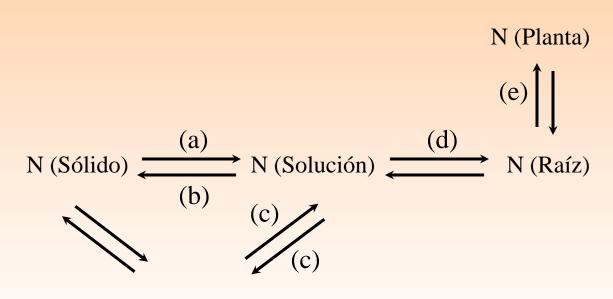
<u>Archivo Editar Ver Buscar Ir Marcadores Tareas Ayuda</u>

Distrandept de la sierra alta de Ecuador.

Dosis P2O5 kg ha⁻¹

todo el poder de fijación.

adicionales para predecir adecuadamente los requerimientos de P.


Diferentes cultivos tienen diferentes niveles críticos de P en un mismo Andisol.

_ [원]

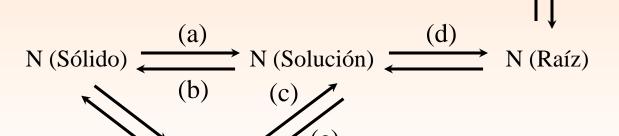
Q Buscar

Cuarto Corte

Ecuación de Fried y Broeshart

N (Cambiable)

N = Representa un nutriente cualquiera

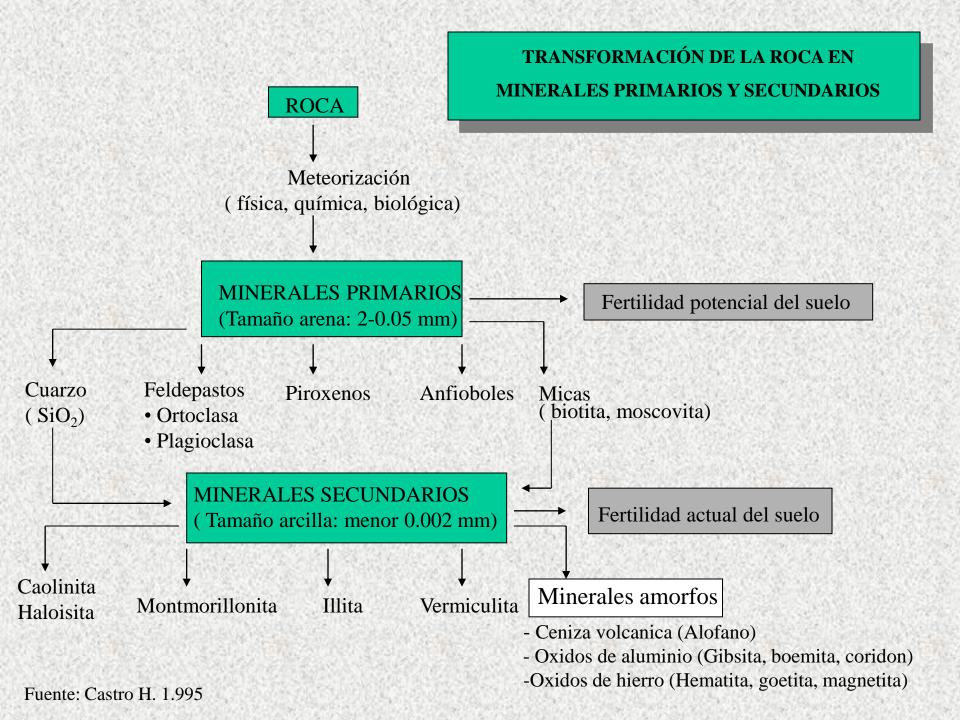

Ecuación de Fried y Broeshart

Dinamica del Sistema

- a) Solubilización y Mineralización
- b) Fijación e Inmobilización

N (Planta)

- c) Intercambio Iónico
- d) Absorción
- e) Translocación


N (Cambiable)

Cinética de la Ecuación

•INTENSIDAD

•RESTITUCIÓN

Análisis de un Suelo Joven

Relación de Bases

Muestra	Resultado	Unidades	Interpretación	Muestra	Resultado	Unidades	nterpretación
Arena	70,00	%		Na		p.p.m.	
Limo	20,00	%		K	0,31	p.p.m.	Normal
Arcilla	10,00	%		Al	4,40	p.p.m.	Alto
Textura	Franco Arenoso			Р	2,00	p.p.m.	Bajo
M.O. %	28,90	%	Alto	S		p.p.m.	
рН	5,00		Bajo	Zn	2,00	p.p.m.	Bajo
C.I.C. Ef	5,10	Meq / 100 gr	Bajo	Cu	1,00	p.p.m.	Bajo
CO ₃		Meq / 100 gr		Fe	190,00	p.p.m.	Normal
N		Meq / 100 gr		Mn	3,00	p.p.m.	Bajo
Ca	0,20	Meq / 100 gr	Bajo	В	ND	p.p.m.	Bajo
Mg	0,20	Meq / 100 gr	Bajo				

 $Al^{3+} = 4.4/5.1 = 86 \%$

K=6%

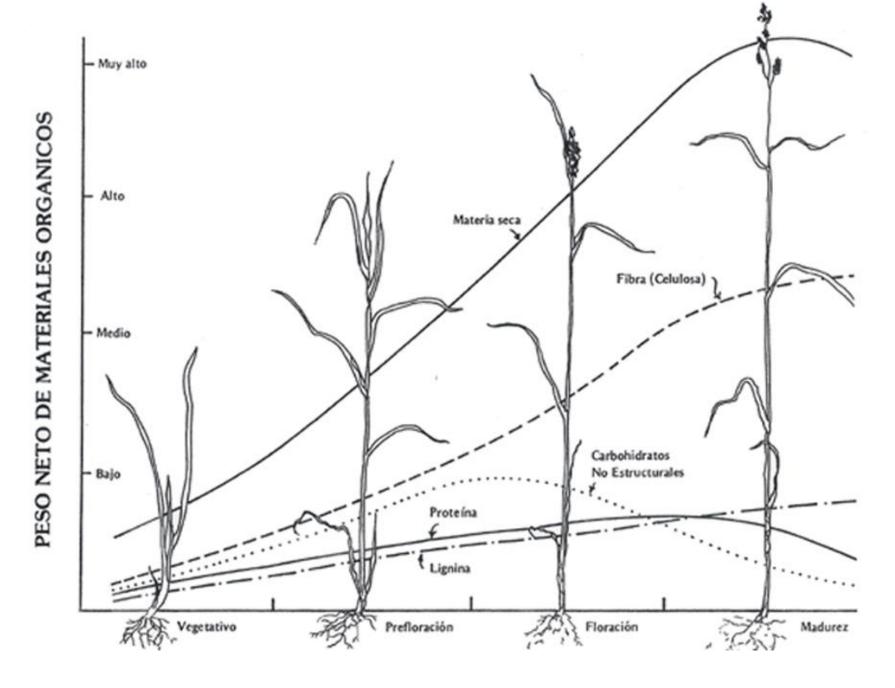
 $Ca^{2+}+Mg^{2+}=0.4/5.1=8\%$

Producción de Forraje Seco por Año y Remoción de Elementos por Pastos de Clima Frío

Especie	Producció	n Ele	ementos	Removi	dos (kg/	ha)
	(Ton/ha)	N	P ₂ O ₅	K ₂ O	Mg	S
Kikuyo	14	389	83	415	-	-
(Pennisetum clandestinum)						
Festuca alta	8	151	73	207	14	-
<u>(Festuca arundinacea)</u>						
Azul orchoro	7	224	61	201	22	28
(Dactylis glomerata)						
Raigrás inglés	8	240	95	268	45	-
<u>(Lolium perenne)</u>						
Raigrás tetrelite, Aubade, etc	16	432	110	480	-	-
<u>(Lolium sp)</u>						
Alfalfa	25	890	134	672	60	57
<u>(Medicago sativa)</u>						
Tréboles	15	336	100	403	34	34
(Trifolium repens y T. Pratense)						

Producción de Forraje Seco por Año y Remoción de Elementos de Clima Cálido

Especie	Producción	n Ele	Elementos Removidos (kg/ha)							
	(Ton/ha)	N	P ₂ O ₅	K ₂ O	Mg	S				
Pangola	17	272	78	306	-	-				
(Difitaria decunbens)										
Guinea	28	322	113	488	110	51				
<u>(Panicum maximun)</u>										
Pará	29	344	109	515	88	46				
(Brachiaria mutica)										
Braquiaria	19	230	53	252	-	-				
(Brachiaria decumbens)										
Elefante	31	339	165	677	7 0	84				
(Pennisetum purpureum)										


Respuesta de los Pastos a la Aplicación de Nitrógeno en el Valle del Cauca

(Ton/ha de forraje seco por corte)

Dosis de N	Pangola	Pará	Angleton	Braquiaria	Puntero
kg / ha	(9)*	(9)	(9)	(12)	(14)
0	0.41	0.69	1.18	0.99	1.50
25	1.74	2.52	4.00	1.67	2.80
50	3.68	4.37	6.91	2.45	4.09
100	6.27	7.41	10.21	3.08	4.40
200	8.26	10.65	10.78	3.83	4.80

^{*}Entre paréntisis el número de cortes.

N aplicado después de cada corte. Aplicación de 50 kg/ha de P2O5 y repectivamente, cada 6 cortes.

Fuente: Bernal Eusse, Javier

Análisis de Minerales en Suelos de Fincas Lecheras de la Sabana de Bogotá

Localidad	Finca		%	ppm		Meq/1	00 g de	suelo					
		pН	МО	P	Al	Ca	Mg	K	Na	Fe	Cu	Mn	Zn
Subachoque	Acacías	5,50	18,30	24	2,15	2,75	0,25	0,31	0,1	226	0,90	6,3	2,3
Subachoque	Aguaclara	6,80	22,10	41	0,20	17,35	0,7	0,41	0,06	189	0,60	5,7	3,2
Zipaquira	El Molino	5,10	4,30	8	2,65	4,70	1,55	15	0,3	451	1,40	15,5	6,3
Zipaquira	Aguata	5,10	4,30	16	4,15	4,85	1,05	15	0,25	726	6,30	39,5	16
Ubaté	Montiel	5,20	10,40	10	3,25	8,22	3,05	49	32	242	7,30	9,8	15,6
Cota	Escocia	5,60	15,00	65	2,66	4,60	0,93	45	2	194	2,20	6,2	7,6
Subachoque	Tachi	5,50	14,60	11	2,10	5,40	0,4	6	1	693	2,40	10,3	2,5
Subachoque	El Vergel	4,90	27,50	4	5,20	2,00	0,3	22	1	203	4,10	5,1	4,8
Facatativa	Sta. Marta	6,50	11,90	88	0,20	16,30	2,4	68	5	190	1,50	8,3	1,5
La Calera	San Isidro	5,00	13,70	34	3,46	3,10	0,29	27	7	235	1,00	14,2	12,8
Sopó	La Verbena	6,40	3,10	50	0,50	6,10	1,6	45	2	420	4,40	18,3	9,9

Análisis de Minerales en Forrajes de Fincas Lecheras de la Sabana de Bogotá

				%					ppm					
Localidad	Finca	Especie	Р	Ca	Mg	K	Na	Fe	Cu	Mn	Zn			
Subachoque	Acacías	K+Rg+Tet	11,26	2,51	0,57	0,50	566	713	11	128	20			
Subachoque	Aguaclara	K+Tet	11,63	2,63	0,41	0,42	626	665	21	102	26			
Zipaquira	El Molino	K+Rg+Tet	10,77	2,31	0,61	0,55	549	726	12	104	16			
Zipaquira	Aguata	K	11,00	2,31	0,74	0,48	647	481	26	133	19			
Ubaté	Montiel	K+Rg	11,86	2,37	0,56	1,77	967	256	19	268	25			
Cota	Escocia	K+Rg	12,34	2,48	0,61	1,51	672	216	14	211	21			
Subachoque	Tachi	Rg+Tet	10,11	2,59	0,59	1,55	611	299	22	171	23			
Subachoque	El Vergel	Rg	10,60	2,64	0,67	1,34	461	162	39	134	23			
Facatativa	Sta. Marta	K+Rg+Tet	9,26	2,61	0,65	1,49	662	204	13	204	21			
La Calera	San Isidro	K+Azul Or.	10,88	1,94	0,37	1,20	532	288	14	128	25			
Sopó	La Verbena	K+Rg	9,95	2,64	0,72	0,55	660	509	9	116	23			

Promedios de 2 y 3 determinaciones por finca.

Analisis de Minerales en Suero Sanguíneo e Hígado en Fincas Lecheras de la Sabana de Bogotá

				Suero			Hígado					
Localidad	Finca	Р	Ca	Mg	Cu	Zn	Mg	Fe	Cu	Zn	Mn	
		n	ng/100m	nl		mg/l			ppm			
Subachoque	Acacías	7,67	11,26	2,51	0,57	0,50	566	713	11	128	20	
Subachoque	Aguaclara	6,04	11,63	2,63	0,41	0,42	626	665	21	102	26	
Zipaquira	El Molino	4,96	10,77	2,31	0,61	0,55	549	726	12	104	16	
Zipaquira	Aguata	5,81	11,00	2,31	0,74	0,48	647	481	26	133	19	
Ubaté	Montiel	3,80	11,86	2,37	0,56	1,77	967	256	19	268	25	
Cota	Escocia	4,24	12,34	2,48	0,61	1,51	672	216	14	211	21	
Subachoque	Tachi	4,59	10,11	2,59	0,59	1,55	611	299	22	171	23	
Subachoque	El Vergel	5,93	10,60	2,64	0,67	1,34	461	162	39	134	23	
Facatativa	Sta. Marta	4,89	9,26	2,61	0,65	1,49	662	204	13	204	21	
La Calera	San Isidro	6,14	10,88	1,94	0,37	1,20	532	288	14	128	25	
Sopó	La Verbena	4,54	9,95	2,64	0,72	0,55	660	509	9	116	23	

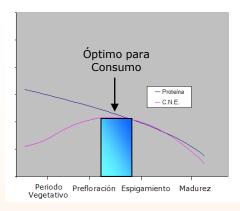
Promedios de 5, 10 y 15 determinaciones por finca.

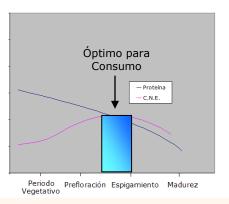
Conclusiones

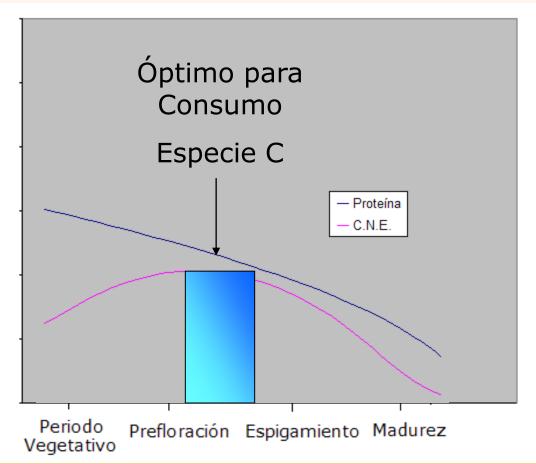
- Para ninguno de los elementos analizados se encontraron relaciones que permitan asociar directamente sus niveles en el suelo, forraje y tejido animal.
- Entre los elementos minerales analizados, la mayor proporción de correlaciones se presentó cuando se relacionaron sus niveles en el suelo.
- De acuerdo con investigaciones de otras latitudes se puede inferir que las relaciones minerales en el suelo-planta y animal cambian con las condiciones ambientales.
- El no encontrarse de modo general relación entre los niveles de minerales en suelo y forrajes, puede ser indicativo que la aplicación de fertilizantes no necesariamente implica aumento en igual proporción del contenido mineral en la planta
- La aplicación de fertilizantes al suelo no necesariamente implica aumento en igual proporción del contenido mineral en la planta.

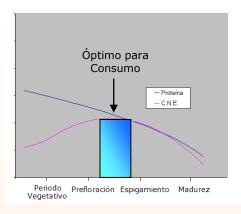
Agroecologia Propuesta para nuestra Ganaderia

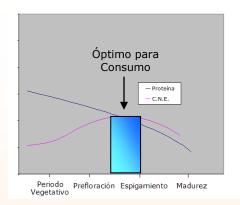
La Revolución verde nos legó el paradigma de que la pobreza y el hambre eran problemas de producción; hoy, después de décadas de evidenciarse su fracaso como modelo de desarrollo, seguimos trabajando fundamentados en "Picos de Producción" y desconocemos la riqueza de nuestra Diversidad.

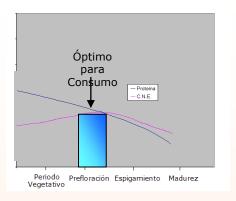

Agroecologia Propuesta para nuestra Ganaderia

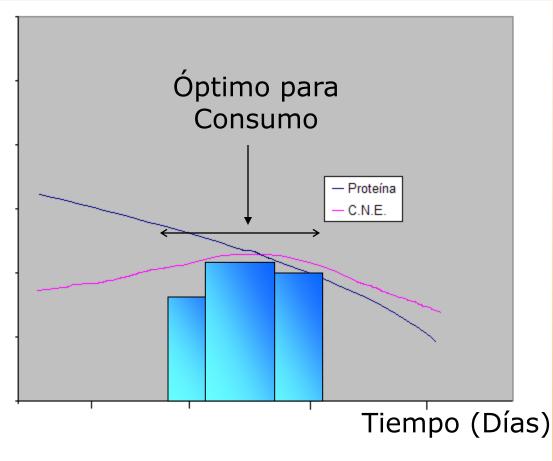

Produciremos basados en el "Insumo Intelectual"
Nuestra rentabilidad la darán los "Litros Libres"


La Diversidad Floristica de la Pradera




Indicadores Agroecológicos del Sistema Agropastoril





Indicadores Agroecológicos del Sistema Agropastoril

Monocultivo & Diversidad

Indicadores Agroecológicos del Sistema Agropastoril

El estiércol Bovino

Las Lombrices esos Grandes Labradores

Indicadores Agroecológicos del Sistema Agropastoril

